
www.manaraa.com

www.manaraa.com

MULTIMEDIA
SOFTWARE
ENGINEERING

www.manaraa.com

THE KLUWER INTERNATIONAL SERIES
IN SOFTWARE ENGINEERING

Series Editor

Victor R. Basili
University ofMaryland

College Park, MD 20742

Also in the Series:

FORMAL SPECIFICATION TECHNIQUES FOR ENGINEERING MODULAR C
PROGRAMS, by TAN Yang Meng; ISBN: 0-7923-9653-7

TOOLS AND ENVIRONMENTS FOR PARALLEL AND DISTRIBUTED
SYSTEMS, by Amr Zaky and Ted Lewis; ISBN: 0-7923-9675-8

CONSTRAINT-BASED DESIGN RECOVERY FOR SOFTWARE
REENGINEERING: Theory and Experiments, by Steven G. Woods, Alexander E.
Quilici and Qiang Yang; ISBN: 0-7923-8067-3

SOFTWARE DEFECT MODELING, by Kai-Yuan Cai; ISBN: 0-7923-8259-5

NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING, by
Lawrence Chung, Brian A. Nixon, Eric Yu and John Mylopoulos; ISBN: 0-7923­
8666-3

EXPERIMENTATION IN SOFTWARE ENGINEERING: An Introduction, by
Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn Regnell,
Anders Wesslen; ISBN: 0-7923-8682-5

The Kluwer International Series in Software Engineering addresses the
following goals:

• To coherently and consistently present important research topics and their
application(s).

• To present evolved concepts in one place as a coherent whole, updating
early versions of the ideas and notations.

• To provide publications which will be used as the ultimate reference on the
topic by experts in the area.

With the dynamic growth evident in this field and the need to communicate
findings, this series provides a forum for information targeted toward Software
Engineers.

www.manaraa.com

MULTIMEDIA
SOFTWARE

ENGINEERING

by

Shi-Kuo Chang
University of Pittsburgh, U.S.A.

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

www.manaraa.com

Library of Congress Cataloging-in-Publication Data

Chang, S. K. (Shi Kuo), 1944-
Multimedia software engineering / by Shi-Kuo Chang.

p. cm. -- (Kluwer international series in software engineering ; 7)
Includes bibliographical references and index.
ISBN 978-1-4613-6997-4 ISBN 978-1-4615-4435-7 (eBook)
DOI 10.1007/978-1-4615-4435-7
1. Multimedia systems. 2. Software engineering. 1. Title. II. Series.

QA76.575 C43 2000
006.7'6--dc21

Copyright © 2000 by Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers in 2000
Softcover reprint ofthe hardcover lst edition 2000

99-056039

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, mechanical, photo-copying, recording,
or otherwise, without the prior written permission of the publisher, Springer Science+
Business Media, LLC.

Printed an acid-free paper.

www.manaraa.com

vii

Contents

Preface

I. A Framework for Multimedia Software Engineering

2. Perspectives in Multimedia Software Engineering II

3. Syntax: Visual Languages 29

4. Syntax: Multimedia Languages 35

5. Semantics: The Active Index 51

6. Semantics: Teleaction Objects 71

7. Pragmatics: Tools for a Multimedia Development Environment 101

8. Pragmatics: Prototyping Multimedia Applications 117

9. Systems: The Design of Multimedia Languages 137

10. Systems: Distributed Multimedia Systems Design 147

II. Systems: The Specification ofMultimedia Applications 185

12. Exercises and Project Suggestions 223

References 229

fud~ n7

www.manaraa.com

Preface

Multimedia has two fundamental characteristics that can be expressed by
the following formula: Multimedia =Multiple Media + Hypermedia. How
can software engineering take advantage of these two characteristics? Will
these two characteristics pose problems in multimedia systems design?
These are some of the issues to be explored in this book.
Managers, software engineers, programmers and people interested in

gaining an overall understanding of multimedia software engineering can
read the two to four chapters of the book.
The six chapters from Chapter Three to Chapter Eight present multimedia

software engineering according to the conceptual framework introduced in
Chapter One. Practitioners, system developers, multimedia application
designers, programmers and people interested in prototyping multimedia
applications can read these six chapters.
The next three chapters are more research oriented and are mainly

intended for researchers working on the specification,· modelling and
analysis of distributed multimedia systems. Scientists, researchers and
software engineers interested in the systems and theoretical aspect of
multimedia software engineering can read these three chapters.
The book can be used as a textbook in a graduate course on multimedia

software engineering or in an undergraduate course on software design
where the emphasis is on multimedia applications. It is especially suitable
for a project-oriented course. To serve that purpose, exercises and project
suggestions are included, and the experimental MICE software can be
downloaded from my web site at http://www.cs.pitt.edu/-chang.
For an evolving discipline such as multimedia software engineering, the

courseware will also be constantly evolving so that a multitude of

www.manaraa.com

information items can be accessible to the readers and viewers. I am also
committed to be available on the Internet in case the readers and viewers
have any questions regarding this book or the MICE experimental software.
J am indebted to my colleagues at the University of Pittsburgh who

supported my idea to redesign the second graduate elective on software
engineering into a course on multimedia software engineering. Thanks are
also due to my students in the Spring J999 multimedia software engineering
class: Deepika Balakrishna, Kristin Balon, Glenn Buckholz, Jing Chen,
Patrick Herron, Meepani Karunanayake, Xiaozhong Luo, Matthew
McGrath, Thongchai Rojkangsadan, Xiaodong Shi and Harry Thompson
who contributed to the survey reported in Chapter Two and also made many
suggestions regarding the MICE experimental software. I often feel that I
learn more from them than what they learn from me. Undoubtedly, that is
why teaching is such a rewarding profession.
Regarding the contents of this book, individual chapters are based upon

my own research and the research work of my colleagues or former students:
Tim and Mara Arndt (Chapter Seven and Chapter Eleven), Diana Chang
(Chapter Six), Chi-Cheng Lin (Chapter Ten) and Peppe Polese (Chapter
Nine).
The editing of this book was accomplished on a tiny Toshiba Libretto,

which apparently was not prepared for such twenty-hour-a-day heavy editing
work during the hot summer months. It moaned and cried and managed to
destroy two chapters when overheated, but eventually delivered the work. I
am indebted to James Chien who restored one of the two destroyed chapters
and saved me at least one week of hard work.
I also thank my wife Judy, my daughters Emily and Cybele and in

particular my grandson Albessant who let me sneak away to complete this
book during a critical period of Albessant's life, although I must admit it is
much more fun to watch Albessant grow.

Shi-Kuo Chang

www.manaraa.com

Chapter 1

A Framework for Multimedia Software Engineering

On December 31, 1998 USA Today carried an interesting article, "Birth
of a New Order", talking about the year that the world's lines of time and
space collapsed. The most incisive paragraphs are excerpted below:

The global, time-crunched market driven by electronic information
"forces things to get bigger and smaller at the same time, " says Nicholas
Negroponte, author and technologist at the Massachusetts Institute of
Technology. "And that's so ironic, when things want to do both but not stay
in the middle. There will be an increasing absence of things that aren't either
very local or very global". Oil and cars aren't much suited to being small
and local. So they're moving to become gigantic and cross-border. As for
being small and local, that's where the Internet, or World Wide Web, comes
in -- and it works in two ways. It lets little companies be global, so a start-up
in a garage can put its goods or services on a Web site and sell world-wide,
competing against midsize or big companies, wiping out disadvantages
(such as distribution and scope) that once had to do with distance. And since
little companies can change direction faster than bigger ones, they have an
advantage in time. Big companies. used to have time and distance on their
side. Increasingly, little ones do. And so in 1998, we had the phenomenon of
Amazon.com, which has become such a symbol of small beating big that
business people have turned it into a verb: to be "amazoned".
It is interesting to study how Internet and multimedia technology might

help the "little guys" compete against the "big guys". Indeed, this
investigation may lead to a better understanding of the roles of multimedia
software engineering (MSE) in this new Internet-based industrial revolution.

www.manaraa.com

2 Chapter 1

1. HIGH PRESENCE AND HIGH TOUCH

Internet and multimedia are changing the rules of the economy and
redefining our businesses and our lives. It is destroying solutions such as
mass production, segmented pricing, and time and distance for big
businesses. A company can develop a web page and advertising campaign
and quickly compete in the world market. This has led to the flattening of the
economy, whereby established companies and individuals doing business on
their own can compete on an equal plane. The small companies that succeed
in challenging the large companies are the ones who can maintain a global
presence and yet make people feel that they are personal and easy to deal
with.
(1) Small companies can interact closely with their customers, so that the

customers feel that they are able to communicate to the small company what
they need, as opposed to the customers merely accepting the mass-produced
product that large companies will sell and not give much ground for
derivation from the product.
(2) Web changed from just a means of advertising, to a medium to

rapidly exchange ideas with potential customers. Since the small company
listens to what they say, it not only results in having a satisfied (and probably
a faithful) customer but increases sales significantly with time.
(3) The Internet's primary advantage in advertising is not so much in

attracting attention and conveying a brief message (the tasks assigned to
traditional advertising media), but lies instead in delivering in-depth, detailed
information. Its real power is the ability to provide almost infinite layers of
detail about a product or service, interactively, at the behest of the user.
However, small companies have to work smarter and respond more

quickly [Murr98]. They have to avoid mistakes and make the best of
possible use to everything. Corporations with big budgets can afford to lose
their investments, while a small company looks at web as survival, not as an
investment.
The small businesses also need to realize having a web site does not

automatically mean that the company will reach millions of potential
customers. It simply means that there is the potential to reach millions of
potential customers. Company has to promote the site through
advertisements, e-mail, links to other sites, and cutting edge multimedia
technology to attract lots of visitors. For a new start-up small company, a
brand new idea is always crucial. Second, multimedia technology should be
used to provide various kinds of services on the web site. Third, once the site
starts catching on and e-mails start rolling in, more and more person hours
should be put into keep up with it all.

www.manaraa.com

1. A Frameworkfor Multimedia Software Engineering

2. WHAT BUSINESSES WANT FROM
MULTIMEDIA TECHNOLOGY

2.1 How Small Businesses View Technology

3

There are significant differences in how large and small businesses view
technology [JBR95]: 1) Affordability - small businesses have to be
extremely cost conscious, while big businesses have a larger capital to invest
in technology. 2) Scalability - all small businesses have ambitions to become
big and this is an important requirement in the technology that they buy. 3)
Fast return on investment - while large companies can wait up to 12-18
months for returns, small businesses want instant gratification. 4) Simplicity
- most small businesses want 'plug and play' products such as, for example,
the Unix multiserver networks, or the peer-to-peer networks.

2.2 Advantages of Multimedia Technology

From the perspective of a small company, the advantages of multimedia
technology are perceived as follows:
(1) Helps develop advertising that could be used in many different media,

thus cutting advertising costs.
(2) Cuts down on the amount of time the development staff needs to deal

with customer service issues.
(3) Gives the appearance of having all the customer service support of a

larger company.
(4) Facilitates out-sourcing [NeiI98].
(5) Keep clients aware of progress in almost real time by allowing them

access to the site in development.

2.3 Wanted: Flexible MSE Tools

What businesses want from multimedia, in the above context, become
quite clear:
(1) Affordability => software tools
(2) Scalability => scalable software tools
(3) Fast return on their investment => prototyping tools
(4) Simplicity => easy-to-use tools
(5) Helps develop advertising that could be used in many different media
=> adaptive multimedia tools

(6) Cuts down on the amount of time the development staff needs to deal
with customer service issues => customer-service-oriented tools

www.manaraa.com

4 Chapter J

(7) Gives the appearance of having all the customer service support of a
larger company => scalable tools

(8) Facilitates out-sourcing => specification tools
(9) Keep clients aware of progress in almost real time by allowing them
access to the site in development => incremental development tools

3. INTERNET AND MULTIMEDIA TECHNOLOGY
TRENDS

To support the design of such flexible MSE tools, we note the following
Internet and multimedia technology trends:

(1) The Browser will become the preferred universal interface.
(2) Java, already known as the de facto standard, will offer more

attractive features in reducing the cost of Internet development to that of
typical client/server projects.
(3) Event-based modeling will provide software developers significant

advantages over in-house development.
(4) Sophisticated tools will monitor events as they change. Agents will be

used to post events and make their own decisions about how to process
events [Blak98]. Window dialogs will assist engineers with dynamics of
objects.
(5) Businesses will find they will not be equipped to keep-up with new

technology. To compensate, they will defer to out-sourcing to obtain Internet
and multimedia technology.
(6) The proliferation of the Internet will give rise to data centers that will

decentralize data and provide multiple companies access to data on a global
basis [NeiI98]. This in turn will promote the development of higher speed
communication lines with remote management software systems. Internet 2
will replace existing multimedia standards with higher speed and enhanced
video-conferencing.
(7) Embedded wireless communication will find its way into the Internet.

This technology will facilitate remote access to the Internet, rendering
further proliferation of its use [Patr99].
(8) Personal digital assistant (PDA) and/or palm top computer will

become popular because of their cheap price and small size. People will use
PDA to connect to Internet or do personal information processing. It can
display video clip, play audio file or control household equipment. Mobile
agent software will be the important application for the PDA. Such agent
software can do various activities such as downloading or finding interesting
information from Internet, exchanging information among them, etc.

www.manaraa.com

1. A Frameworkfor Multimedia Software Engineering 5

(9) There will be multimedia components in the software engineering
process.
(10) Multimedia software in the future will be multi-lingual in order to

gain widespread usage rather than specific in any particular language.

4. WEB SITE LIFE CYCLE

A web site in many ways resembles other types of corporate information
systems. Each web site has a limited life span, similar to the water fall
software life cycle model. One major difference is the emphasis on content
development in multimedia applications. The phases of web site
development are as follows: idea formulation, general web site design,
detailed design of web site, testing of an implementation and maintenance.
(1) Idea Formation: During the idea formulation phase, specific target­

marketing program, content goals and objectives must be set. Since a web
site development project can become very time consuming and a major
capital investment to owners of small businesses, it may be more effective to
identify opportunity of specialized markets big companies have ignored.
Furthermore, the profile of netizens must be carefully studied [Choi99] to
find out who is surfing the net and what these people are looking at. Small
businesses should be aware of the dynamics of the on-line market place and
develop strategies and plan accordingly. The ideas of this phase can pave the
foundation for developing a comprehensive plan for web site design.
(2) Web Site Design: Web site should be integrated into the company's

backbone information system so that the web site can grow along with the
business. To be successful, companies must integrate e-commerce into their
overall business strategies and processes. Moreover, content needs to be
targeted to specific user's needs. Visitor's information should be collected so
that the company will be able to tailor the web pages to the specific needs of
the interested customers. Furthermore, it is important that the web site can be
surfed fast and efficiently. In addition, the users should be involved by
providing an opportunity for them to input suggestions and complaints. The
development of navigational cues and the user interface is of critical
importance. The actual design tasks can be out-sourced for a small company.
Also a new web site should be linked to as many search engines as possible.
This can increase the chance that the web site is visited. Financial
infrastructure should be developed properly as well.
(3) Testing: Once the implementation is complete, the company should

conduct a pilot to test its integrity and effectiveness. The pilot provides an
opportunity to obtain feedback from functional groups, customers and
business partners. It ensures the quality and usability of the site.

www.manaraa.com

6 Chapter 1

(4) Maintenance: It is essential that new content is developed and the web
site is kept refreshed. Timeliness is the key on the web. Moreover,
appointing a web master to manage the site on a day-to-day basis is
imperative. Web master can trouble-shoot any error such as a link to a
defunct web address, track the traffic of the web site, use reader feed back to
build a loyal following and ensure server maintenance and security. Also,
this person or persons should make sure that the company's web site supports
the latest versions of popular browsers.

s. DUAL ROLES OF MULTIMEDIA SOFTWARE
ENGINEERING

Having discussed what businesses want from multimedia technology and
the web site life cycle, we can now discuss the roles of multimedia software
engineering. We can view MSE in two different, yet complementary, roles:
1) to apply multimedia technology to the practice of software engineering;
and 2) to apply software engineering principles to the design of multimedia
systems.
Multimedia has two fundamental characteristics that can be expressed by

the following formula: Multimedia = Multiple Media + Hypermedia.
How can software engineering take advantage of these two

characteristics? Will these two characteristics pose problems in multimedia
systems design?
In Chapter 2 we will give a focussed survey of current research in MSE

to apply multimedia technology to the practice of software engineering, or to
apply software engineering principles to the design of multimedia systems.
From the focussed survey of Chapter 2 it will be seen that multimedia is
useful in software engineering, but whole-hearted incorporation of
multimedia in software engineering has not yet happened [Hira99]. There is
an ongoing paradigm shift -- from business orientation to entertainment
orientation [Hira99]. New software process models and paradigms, such as
object-oriented approach, are needed in multimedia systems design. Other
interesting approaches include model-based approach to define navigation
and access primitives, virtual multimedia objects approach to construct
complex multimedia objects using virtual links, and identification of patterns
(of navigation, news, landmark, etc.) to facilitate multimedia design. A long­
term goal ofMSE should be to design multimedia systems by multimedia.

www.manaraa.com

J. A Frameworkfor Multimedia Software Engineering

6. A CONCEPTUAL FRAMEWORK FOR MSE

7

A conceptual framework for MSE based upon the notion of
multidimensional language (ML) will now be presented.
A multidimensional language is a language where the primitives are

objects of different media types and the operators comprise of spatial and
temporal operators. Because of the importance of such spatial/temporal
operators, we prefer to call such languages multidimensional languages
rather than multimedia languages, although the multidimensional languages
can be used to specify multimedia applications. From this viewpoint, a
multimedia application is equivalent to a multidimensional language ML.
This viewpoint enables us to describe the various aspects of multimedia

applications with conceptual clarity. The corresponding framework for MSE
thus provides a principled approach, a set of scalable, adaptive tools and an
environment for the specification, design, testing and maintenance of
multimedia applications.

6.1 Syntactic Aspect

A multimedia application is constructed from a collection of multimedia
objects. The primitive objects are media objects of the same media type.
The complex multimedia objects are composed from these primitive objects
and in general are of mixed media types. The syntax of ML describes how
the complex multimedia objects are constructed from the other multimedia
objects. Spatial and temporal composition rules must be taken into
consideration.

6.2 Semantic Aspect

Multimedia applications nowadays are seldom passive. A passive
multimedia application can be specified by a static ML, but a dynamic
multimedia application requires the system to take actions in response to
user input or internal/external stimuli. The semantics of ML describes how
the dynamic multimedia objects are derived from other multimedia objects
when certain internal/external events occur. Since an important
characteristics of multimedia is the ability to create links and associations,
the semantics of ML must take that into consideration.

6.3 Pragmatic Aspect

Multimedia applications are heavily content-based and require a lot of
manual hard work to put together. Tools are needed to assist the designer in

www.manaraa.com

8 Chapter J

building a multimedia application in a timely fashion. The pragmatics of ML
can be based upon the patterns for various multimedia structures or sub­
structures, such as navigation structures, content-based retrieval structures,
etc. Once such structures and sub-structures are identified, they can be used
as building blocks in putting together a multimedia application.

6.4 Systems Aspect

Last but not least, the systems aspects of multimedia applications must be
considered. Multimedia applications require the support of distributed
multimedia systems. The systematic design, specification, analysis and
optimization of distributed multimedia systems will improve the
performance of multimedia applications. Both QoS (quality of service) and
QoP (quality of presentation) must be considered in systems design.

6.5 The Multimedia Software Life Cycle

With the above described framework, the multimedia software life cycle
can be seen to consist of three phases: 1) Syntactic Phase: Gather user's
requirements to specify the syntactic structure of the multimedia application.
2) Semantic Phase: Design the actions to be performed by the multimedia
application. 3) Pragmatic Phase: Identify the basic building blocks and
utilize tools to implement and test the application.
In anyone of these three phases, the designer must always pay attention

to the systems issues and to optimize the performance of the application in a
distributed multimedia system environment.

If the three phases are followed in a sequential order with no repetition,
we have something similar to the classical waterfall model. If the three
phases are iterated fairly quickly in a software development environment
with a set of integrated tools, we have something akin to the rapid
prototyping model. If the three phases are iterated using increasingly
sophisticated tools with more and more emphasis on scaled-up operations,
we have the spiral model.

7. ORGANIZATION OF THE BOOK

This book is organized according to the conceptual framework described
in Section 6.

www.manaraa.com

J. A Framework/or Multimedia Software Engineering

7.1 Overview

9

Chapters 1 and 2 give an overview of multimedia software engineering.
These two chapters are introductory in nature and can be read with ordinary
effort. Managers, software engineers, programmers and people interested in
gaining an overall understanding of multimedia software engineering can
read mainly these two chapters and secondarily the following two chapters,
chapters 3 and 4, on the syntactic aspect of multimedia software engineering.

7.2 Syntax, Semantics and Pragmatics

The next six chapters, chapters 3 to 8, present the multimedia software
engineering according to the proposed conceptual framework. Practitioners,
system developers, multimedia application designers, programmers and
people interested in prototyping multimedia applications can read these six
chapters.
The syntactic aspect of multimedia software engineering is presented in

chapters 3 and 4. Chapter 3 discusses the elements of a visual language, and
Chapter 4 shows how the fundamental concept of a visual language can be
extended to multimedia, so that multimedia interfaces can be designed. This
chapter also gives a preliminary introduction to the concept of active index.
The semantic aspect of multimedia software engineering is the focus of

the next two chapters. In Chapter 5 the active index is introduced. Chapter
6 then introduces the tele-action object, which combines the syntactic aspect
(the multidimensional language for user interface), with the semantic aspect
(the active index cells for performing actions).
Chapters 7 and 8 cover the pragmatic aspects of multimedia software

engineering. The software tools useful in multimedia applications
development are presented in Chapter 7. Chapter 8 describes the MICE
(Multimedia Information Custom Engineering) environment in sufficient
detail so that multimedia applications can actually be prototyped in the
MICE environment. Such details can be skipped if the reader is not
interested in using MICE to do actual prototyping work.

7.3 Research Issues

The next three chapters are more research oriented and intended for
researchers working on the specification, modelling and analysis of
distributed multimedia systems. Scientists, researchers and software
engineers interested in the systems and theoretical aspect of multimedia
software engineering can read these three chapters.

www.manaraa.com

10 Chapter J

Chapter 9 discusses how multimedia languages can be designed
systematically by adopting a principled approach. The design and analysis
of distributed multimedia systems following a transformational approach is
the subject matter of Chapter 10. Last but not least, Chapter 11 addresses
the issues of formal specification of multimedia applications.

7.4 Exercises and Project Suggestions

The book can be used as a textbook in a course on software design or in a
course on software engineering where the emphasis is on multimedia
applications. To serve that purpose, exercises and project suggestions are
included in Chapter 12. For exercises, projects and prototyping multimedia
applications, the experimental MICE software can be downloaded from the
author's web site at http://www.cs.pitt.edu/-chang.

8. COURSEWARE SUPPORT

To download the MICE experimental software, the reader can visit to the
author's web site at: www.cs.pitt.edu/-chang, and follow the links to the
courseware on multimedia software engineering. It can be seen that not only
the MICE experimental software is available, but also a wealth of
information on multimedia software engineering. For an evolving discipline
such as multimedia software engineering, the courseware will also be
constantly evolving so that a multitude of information items can be
accessible to the viewers, readers and students. The author is also available
on the Internet in case the reader has any questions regarding this book or
the MICE experimental software. Please feel free to send e-mail to:
chang@cs.pitt.edu.

www.manaraa.com

Chapter 2

Perspectives in Multimedia Software Engineering

As discussed in Chapter 1, we can view multimedia software engineering
in two different, yet complementary, roles: 1) to apply multimedia
technology to the practice of software engineering, or 2) to apply software
engineering principles to the design of multimedia systems.
Multimedia has two fundamental characteristics that can be expressed by

the following formula: Multimedia =Multiple Media + Hypermedia.
Advantages of multiple media are: 1) full utilization of all senses (eye,

ear. etc.), 2) dynamic presentations, and 3) better understanding by the user.
The disadvantages include: 1) greater demands on storage, bandwidth and
computing resources, 2) cognitive overload, and 3) system complexity.
Hypermedia is a style of building systems for information representation

and management around a network of multimedia nodes connected together
by typed links [Hala95]. The advantages of hypermedia include: 1) ease of
documentation, 2) ease of conceptualization and/or visualization, and 3)
dynamic expansion of information hyperspace. The disadvantages are also
well recognized: 1) disorientation due to "lost in hyperspace" phenomenon,
2) cognitive overload, and 3) system complexity.
In this chapter we will give a focussed survey of current research in MSE

to apply multimedia technology to the practice of software engineering, or to
apply software engineering principles to the design of multimedia systems.
Since multimedia is basically multimedia objects plus links, in the following
survey the concept of links and association will come up time and again as
the central theme. The survey is by no means exhaustive, but the topics
presented in this survey are a fair representation of the current research
issues in multimedia software engineering.

www.manaraa.com

12 Chapter 2

1. PROJECT MANAGEMENT USING
MULTIMEDIA TOOLS

One successful application of multimedia technology to software
engineering is in project management using hypermedia CASE tools
[Wild98]. Since the traditional project management tools lack the ability to
capture a multitude of decisions and do not provide document control, a new
Decision Based Systems Development paradigm (DBSD) was developed
[Wild91]. In decision based systems development, usually the following
steps are to be taken:

• Identification and Articulation of the Problem
• Identify Alternative Solutions
• Choose Decision Criteria
• Justify Alternatives
• Evaluate Conditional Decisions
• Put the Decision into Context
• Build Decision View

Multimedia technology allows the decision makers to use text for
problem description, graphs and diagrams r for representing problem space,
and different colors and symbols for denoting status and the latest
information. Moreover, hypermedia allows the linking of documents and
people in a variety of ways.
In the Decision-based Hyper-multimedia CASE (DHC) tool, objects in an

extended document base are linked by five types of links: 1) Reference to
problems/decisions in problem space or SEE links, 2) Reference to a single
on-line document or REFER on-line links, 3) Reference to a Decision View
ofa document set or VIEW links, 4) Timed reference to a contact person or
CONTACT links, and 5) References to off-line documents or REFER off­
line links.
Some link types may be motivated by unix/DOS system commands. For

example REFER is similar to xloadimage for bit-mapped pictures in DOCS.
This DHC tool was applied to Low-Visibility Landing and Surface

Operations (LVLASO) project at NASA Langley Research Center. The
impact on LVLASO is that the DHC tool is applicable to early stages in
systems development. Also, brainstorming was easily documented and not
lost. It encourages people to be more goal-oriented so that tasks that did not
clearly fit in were immediately dropped. Finally it keeps people up to date
with decisions. Future additions may include a CONTACT hyperlink, group
Decisions by functional areas, and better GUI. The importance of this project

www.manaraa.com

2. Perspectives in Multimedia Software Engineering 13

is that it indicates the desirability of having many different types of links for
information/people association.

2. SOFTWARE DOCUMENTATION

Another successful area of application of multimedia technology is 10

software documentation. By. exploiting the nature of hypermedia, powerful
multimedia-based program documentation systems can be developed.

2.1 RST Documentation Model

Reliable Software Technologies Documentation Model uses standard C
comments with the addition of design documents on the WWW. Standard C
Comments are added to program lines whose purpose is not clear, to the
beginning of each function or procedure to explain its purpose and the Pre
and Post conditions, and to the header function to describe its purpose.
The following information is also maintained:

• CVS revision history
• Requirements document
• Relevant research
• Architecture diagram
• UML diagrams

RST documentation web page includes the following information:

• Welcome to the new program web page
• Short description of the project goals and the specific problem to solve.
• Related links
• Project design document
• Project specifications document
• Architecture document
• Research Links: Linkl, Link2, Link3

2.2 Linux HQ Kernel Documentation

Linux HQ Kernel Documentation provides the following:

• Hypertext transformation of the code
• Links to function definitions

www.manaraa.com

14 Chapter 2

• Function search engine

Similar to CVS file hierarchy with links to associated files, Linux
documentation maintains alphabetic listing of file names. It supports a
function search engine. Function calls are linked to function definition, and
there are links to included header files. However, it still relies on the reader
to understand the comments.
An example of Linux HQ Documentation of the Linux Kernel is

illustrated in Figure 1. More information can be found at:
http://www.linuxhq.com

Figure 1. Documetation of the Linux Kernel- An example.

2.3 Variorum

The American Heritage Dictionary (1998) defines "variorum" as follows:
"contains notes or comments by many scholars or critics". The creators of
Variorum define it as a "multimedia tool that aids in the documentation of
programs. ... The integration of WWW capabilities is a key aspect of
variorum's usefulness".

www.manaraa.com

2. Perspectives in Multimedia Software Engineering 15

Variorum [C:;hiu98] allows programmers to record the process of
"walking through" codes using multimedia technology. Variorum supports
hypertext transformation of code and the addition of programmer/author
walkthroughs as voice annotations. Variorum modifies the source code to
include annotation links. However its effectiveness depends critically on
individual authors' annotation style. The amount of voice storage can also
become excessive. However, in the future audio/visual software
documentation systems may overcome the deficiencies oftoday's Variorum.

3. DESIGN OF MULTIMEDIA APPLICATIONS
USING OBJECT-ORIENTED TOOLS

From the above survey it can be concluded that multimedia is useful in
software documentation, but whole-hearted incorporation of multimedia in
software engineering has not yet happened [Hira99]. There is an ongoing
paradigm shift -- from business orientation to entertainment orientation
[Hira99]. New software process models and paradigms, in particular the
object-oriented approach, are needed in multimedia systems design. This
section surveys several object-oriented approaches in multimedia systems
design.
In what follows we will discuss:

• DAMSEL-Dynamic Multimedia Specification Language
• MET++-Multimedia Application Framework
• MME-Object-Oriented Multimedia Toolkit
• PREMO-Presentation Environment for Multimedia Standard

3.1 DAMSEL

DAMSEL is developed at the University of Minnesota. It includes the
design and implementation of advanced multimedia constructs such as
object-oriented extensible and temporal data model. It supports an execution
environment based upon JAVA/CORBA. The temporal model describes
along 3 axes: the temporal relations, delays and exec-based behavior. The
representation using 00 supports complex object definition and queries.
The DAMSEL execution environment is illustrated in Figure 2. The

DAMSEL implementation architecture is illustrated in Figure 3.
The temporal model of DAMSEL is very flexible. It supports user,

system, application-generated events and therefore enables very interactive
dynamic application creation. In the execution architecture, specifications
are written to define the environment behavior and run time execution is

www.manaraa.com

16 Chapter 2

determined by various events. DAMSEL specifications can be embedded
with C++ or JAVA.

Figure 2. DAMSEL execution environment.

Data flow model assists in analyzing and modifying multimedia data.
Data is modelled as stream flowing from a media source to a sink. It allows
the insertion of additional stream objects as the data flows. It also enables
modification and analysis of data. The presentation model provides higher
level abstraction for dealing with and controlling presentations. Data flow is
connected to a presentation server that interacts with the application.
The heart of DAMSEL is a distributed client-server run-time event

manager, which is a multi-user, interactive, internet-wide execution
environment implemented using CORBA and JAVA.
More information about DAMSEL can be found at its web site:

http://www-users.cs.umn.edu/-pazandak/damsel.html

3.2 MET++

MET++ is an object-oriented application framework developed at the
University of Zurich. It supports the development of multimedia applications
using reusable objects for 2D, 3D graphics, audio, video, etc. The framework
consists of a set of interconnected objects that provide the basic functionality
of a working application, which can be easily specialized into individual
application. Through subclassing and inheritance, it supports the reuse of

www.manaraa.com

2. Perspectives in Multimedia Software Engineering 17

code as a class library and the reuse of design structures. Similar
dependencies between object are pre-implemented through predefined object
composition, event dispatching and message flow.

INTERNET
SERVER

------1

I

I

I
I

I

I
I
I

I Java I Netscape IApplet .

UJ
CJ
<[
:::J
CJ
Z
<[
...J

<[

>
<[-,

CLIENT

CORBAAPI

Contin­
uous
Data
Mgr

I Java I Netscape I
!'-pplet. .

JavaAPI

CLIENT

Contin­
uous
Data
Mgr

I
I
I

I

I

I
__ -.J

Figure 3. DAMSEL implementation architecture.

Figure 4 illustrates the MET++ architecture, which is based on 00
application framework ET++. The ET++ 00 class library integrates user
interface building blocks, basic data structures, support for object 110, and
high-level application components. 3D graphics, audio classes, time
structures are added for multimedia support. Hardware dependencies are
hidden in a portability layer.

www.manaraa.com

18 Chapter 2

Application FI'Vrl8WClft< Classes Graphical Bolding BIoocks Media (lass8'$
Application, l'lanager, EventHandler, VObj ect, l'ledia, l'lediaV iew, Timer,
Document, Window, View, compositevObject, l'lenu, TEvent, synchro, Loop,
Command 1I00ve./II!:si2e.... j, Clipper, scroller, BOX, sequence, conductor,
CmdProcessor (llMO,tedO), Slider, Button, Image, TimeFunction, Audiounit,
Dialog, Data, Clipboard, TextView, TextFormatter, sanq>les, Note, scale, ;r
FileCoXlllerter (ASCII, RTF, View3D, Camera, Light, Chord, l'lusicInstrwnent, ~

TIFF EPl'l l'lIm JlIFF _ ThreeD Pol ns cube _ l'lusicplaJ,ler, Timeview, :E

~c Boildi~ BIoocks ~
Object, Class, ClasSl'lanager (Mua·lilfcwlllalioo.CM>jeClIIO.Ch:li\S.eP~ioo); l:"
Collections (List, Set, ArraJ,l, HashTable , Dictionarv), Iterators; ~

File, stream, Filter, IJIC (OS IIO&COl".llilic:llioo(Qo~~); ..
_~~__~~~~~_~~:"_~G~!!'!i~_~'!!_~~~~~~~'~~).i. -- ---T--- _
OIa,aclelS : 1OModel~ : 3)Model~ : 3OModtiK : Sjgnal~l{x.y.r••)
string, I IntensitJ,l, Time, I point, I point3D, I Audio,
Text, !Pitch, Beat, !Rectangle, : Rectangle3D, ! Video
Font i ObjInt, ObjF loat IBitmap I vector, l'latrix i

IOI<>Onlldled
'.,

Figure 4. MET++ System Architecture.

www.manaraa.com

2. Perspectives in Multimedia Software Engineering 19

Time synchronization is an important part of a multimedia presentation.
In MET++, this is specified in a hierarchical composition. As illustrated by
Figure 5, implicit information is made visually explicit due to the hierarchy.

Figure 5. Temporal composition.

Example applications done using MET++ and more information about
MET++ can be found at its web site:
http://www.ifi.unizh.ch/groups/mmllprojects/met++

3.3 MME

The MME Multimedia Extension is a project by Computer Graphics
Center (Fraunhofer), Germany. The software package features a class
hierarchy and development tools for composing multimedia applications.
The goals ofMME are:

• 00 model1ing of various media
• encapsulation of distributed media access and control
• model1ing of time as a precondition to define arbitrary temporal relations
• relations between media objects designed at a higher abstraction level and its
realization at run time

MME objects have the following characteristics:

• application (AO), multimedia (MO)
• media objects handle the transfer of media data from a set of ports (source) to
another

• set of ports (sinks)
• ports (devices like VCR, windows, files or sockets)
• complex media objects handle the definition and maintenance of relations
(temporal and spatial) objects

www.manaraa.com

20 Chapter 2

MME is realized by executing:

• instantiation of media objects out of predefined multimedia classes
• instantiation of complex media objects to define spatial/temporal relations
• definition of new media classes as subclasses of predefined objects and classes

User interaction such as starting, stopping and cueing are supported in
real time (interactive multimedia). MME is implemented in C++ on top of
UNIX, Xwindows system with Xvideo extension, with about 4500 lines of
code. The 00 benefits include reuse, encapsulation, and less time to develop
(about one man-year). More information about MME can be found at its
web site:
http://zgdv.igd.fhg.de/www/zgdv-uig/software/MME

3.4 PREMO

PREMO (Presentation Environment for Multimedia Objects) is a new
standard under development by ISO. The goals of PREMO are:

• to provide a general framework and a reference model for the creation and
programming of distributed multimedia applications

• to allow existing media devices to be interfaced to an application
• 00 programming infrastructure to support the development
• to recognize the evolution of multimedia system technologies for research
tools to mature

• to certify products that meets QoS and fundamental requirements

PREMO is being developed at the CWI-Computer Center, Netherlands,
and more information about PREMO can be found at its web site:
http://dbs.cwi.nVcwwwi/owa/

4. SPECIFICATION OF MULTIMEDIA SOFTWARE
SYSTEMS

Specification and design of multimedia applications pose new challenge
to authoring systems due to temporal and spatial relations. Common design
of hierarchical composition of objects needs to be found, thus leading to
object-oriented tools.
For the specification of multimedia software systems a new paradigm is

espoused: software engineers will do evolutionary design of complex

www.manaraa.com

2. Perspectives in Multimedia Software Engineering 21

systems through: 1) architecture specification, 2) design rationale capture, 3)
architecture V&V, and 4) architecture transformation, using an object­
oriented architecture description language [Tsai99].

=

SfIUctura! Level

CollectorS
.,====: (::::::=::==

i \

== =C::~~~ttiii~L~'~~~
liyPActo1'8 & HypLinkS

Figure 6. Hypermedia information system based upon the actor model.

Dattolo [Datt097] applies the actor model for modelling software as
collections of distributed, cooperative entities, as illustrated in Figure 6. It is
felt that the classical notion of object is too vague to support large-scale
concurrency. On the other hand, actors combine object-oriented and
functional programming in order to make the management of concurrency
easier for the user. An actor reacts to the external environment by executing
its procedure skills (scripts). An example for TeleoActor class definition
based upon the ESAL (Extended Simple Actor Language) is as follows:

(Def TeleoActor
{Actor}
(stor info
hypServices image
inSuggestion brSuggestion cnSuggestion)
[(apply-filter), (visualize), (tree-brws), (grph-brws),])

www.manaraa.com

22 Chapter 2

The Dexter model for hypermedia is used, which is essentially a two­
layer model - runtime layer and storage layer - for hypermedia. The
architecture was applied in the development of a hypermedia system named
DiBlue, which is a distributed version of Blue, a traditional OPLA
hypermedia programming environment. It supports an object-oriented logic
programming system in OPLA, a hybrid language originated from the
marriage between Prolog and CLOS.

5. MODEL- AND PATTERN-BASED DESIGN
APPROACHES

5.1 Model-based Approach to Hypermedia Design

In the model-based approach to hypermedia design, the key concept is to
provide a comprehensive model for software specification and design. For
instance, the Relationship Management Methodology (RMM) comprises 1)
Entity-Relationship design, 2) Application diagram design, 3) M-slice
(aggregate) design, 4) Navigational design, 5) User interface design, 6)
Protocol conversion design, 7) Run-time behavior, and 8) Construction and
testing [Isak96].
The Relationship Management Data Model (RMDM) is the cornerstone

of the RMM methodology. It includes elements for representing information
domain concepts such as entities and relationships, along with navigation
elements such as links. As illustrated by Figure 7, an application design is
described via an RMDM diagram.
During the E-R Design a study of the relevant entities and relationships

of the application domain is conducted. These elements form the basis of the
hypermedia application and show up as nodes or links. During the
navigational design, relevant relationships are identified and made available
for navigation. Since information units can have a very large number of
attributes, the RMM groups the attributes into slices called M-Slices.

www.manaraa.com

2. Perspectives in MuLtimedia Software Engineering 23

Figure 7. An RMDM diagram.

The way navigation is applied in the application by RMM is through the
Access Primitives. The RMM Access Primitives include: I) Unidirectional
link, 2) Bi-directional link, 3) Grouping, 4) Conditional index, 5)
Conditional guided tour, and 6) Conditional indexed guided tour.
Regarding links, navigation establishes an association between an

original data component and destination data components. The associative
link, or simply link, is what effectively allows navigation through data
components, and represents the main characteristic of hypertext and
hypermedia. The consideration of link types by definition establishes
semantic information that allows hypermedia systems to efficiently manage
data or data modelling, preventing this task to be the sole responsibility of
designers or users. Link types can be used through almost every step of
model-based approaches to hypermedia design.
What presently are found in most of the hypermedia systems are static,

persistent and explicit links, defined over content. In RMM, there are links
that can initiate a process such as email, a video exhibition, an audio
exhibition, or a file download. Finally, destination influence establishes what
of the operational services is going to be supported by the link. Links types
are further broken down into two categories:

• Historical category (related to performed navigation)
• Speculative category (related to possible navigation)

www.manaraa.com

24 Chapter 2

A category that supports the retrieval service allows the presentation of
the meaning associated to the description when it exists. Destination
influence can provoke the definition of new links that were not initially
related to infological modelling.
In conclusion, a framework is presented to categorize link types, which

allows the design and construction of richer hypermedia applications. Link
design, which is the kernel of model-based approaches to hypermedia
design, is one of the areas that can benefit from the use of link types. Both
information and operational elements influence link creation, so these issues
should be considered during link design efforts. Information influence is
related to conceptual relationships from the domain of interest, while
operational influence is related to data manipulation services. It is also
proposed that service and destination influences should be considered during
link design. Links types and categories can also be identified and considered
both with model based approaches and with authoring tools to hypermedia
design.

5.2 Pattern-based Approach to Design

In the pattern-based approach to design the idea is to identify important
and relevant design patterns, so that complex design can be constructed from
these design patterns [Lyar97]. This approach can be applied to hypermedia
applications [Garr97]. The patterns for hypermedia applications mainly deal
with navigational structure and interface organization. The navigational
contexts may include: class-derived context, link-derived context,
composite-derived context, and arbitrary context. Two important
navigational structures are News for new information and Landmarks for
subsystems. In what follows, one such pattern will be discussed.

News is motivated by the following problem: "Given a large and dynamic
web site, how do you tell users that there is new information or updates
somewhere inside the site?" In huge web sites, it is not a good solution to
compromise structure in order to make updates easy available. The solution
is to structure the home page in such a way that a space is devoted to the
newest additions:

• Presenting descriptive "headlines" regarding them
• Using those headlines as anchors to link them with their related pages

In summary a software engineering strategy for developing hypermedia
applications is proposed, emphasizing the use of an object-oriented design
method, the use of design patterns, and the partitioning of the development
life cycle in a set of activities addressing different design concerns. The

www.manaraa.com

2. Perspectives in Multimedia Software Engineering 25

design patterns may help to capture and reuse experience and to provide
more comfortable and understandable navigation space.

5.3 Virtual Multimedia Object

:1·.·.,. ".',.

Figure 8. Virtual multimedia objects.

The Virtual Multimedia Object (VMO) [Hoch98] is virtually created
based upon other multimedia objects. A pointing entry (a kind of virtual

www.manaraa.com

26 Chapter 2

link) represents the mapping between a VMO and its original data. It can be
implemented as user-defined deriving procedures.
A prototype system has been constructed under Solaris 2.5.1 in C++. The

system has two layers: Virtual Object layer and Storage layer. Virtual Object
Layer manages VMO and their types. Storage layer has the responsibility for
storing objects. The technique can be applied to any media type.

6. MULTIMEDIA SOFTWARE PROJECT EFFORT
MEASUREMENT

In Section 1 of this chapter we discussed how multimedia technology is
utilized in software engineering project management. In this section we
discuss how to apply software engineering technology in multimedia project
management, and address the issue of multimedia software project effort
measurement.
Why multimedia software project effort measurement is an issue? Can't

multimedia projects be treated in the same way as other types of software
projects? To answer this question, we note that there have been substantial
efforts in measuring traditional transaction processing & process control
systems, but relatively little effort in determining and evaluating multimedia
effort measurements. In fact multimedia software is unique in its emphasis
on contents and the need for storyboarding early in the development cycle.
Because of that, we not only need tools and techniques specific to
multimedia, but also should emphasize different aspects in software project
management. For one, managers from diverse background are needed for
such projects, to form cross-disciplinary teams. For another, due to the
inherently different nature of multimedia systems, the direct application of
existing models and measures may not meet multimedia project management
needs.
A preliminary empirical study to develop an algorithmic mapping to

'effort' using product characteristics appropriate to multimedia software
systems other than LOC or external files is reported in [Fletc98]. The
development effort is regarded as a function of 1) building the system
content - each media form might have a different impact on development
effort - including file name, media type, creation effort, digitizing effort,
editing effort, and 2) Authoring the system - a screen that incorporates a
greater number of objects and events would take proportionally greater effort
to develop. The empirical study on projects developed by 4th year students
and delivered in two stages: prototype and final delivery. The students are
information science students focussed on programming and design students
concentrated on content and interface development. Forty five observations

www.manaraa.com

2. Perspectives in Multimedia Software Engineering 27

were recorded in media component development, but no correlation between
development effort and either of the component variables - media type and
media status. Since data sets were small, generalizations are not possible
from this study.
There is a lack of industry driven determination of important attributes.

Moreover, data collection needs to be exploratory and student projects are
not representative of industry developments. Thus there is a need to develop
an industry-based metrics framework in order to determine system and
component characteristics considered influential in multimedia software
system development efforts. The GoaUQuestionlMetric (GQM) model
shown in Figure 9 is one such framework.

Goal Question Metric Model

G1:Detennine factors that influence
development effort

Q1: Are size related factors
significant determinants of
develoJlllent effort?

Q2: Are content creation factors
significant determinants of
development effort?

Q3: Are authoring factors
significant deteminants of
development effort?

M1.1: # 0 f screens M1.2: #ofmelia
components

M1.3: Ratio of
development to
delivery time

Figure 9. The GoaVQuestionlMetric Model (a small portion is shown for illustrative purpose).

The key issues considered to reflect industry perspective include:

• Development Tools: Authoring tools and other more complex tools offering
visually based high productivity development languages or high level
scripting languages.

• Delivery Platform: Platform dictates media format and optimization
considerations, for example, CD-I must conform to PAL or NTSC.

www.manaraa.com

28 Chapter 2

• Content Development: Media content development is labor intensive, but
difficult to quantify. It depends on media mix, the number of components,
and complexity of each component. Artistic considerations also playa role
in satisfactory completion of project.

• Organizational Capability: Indirect effects such as size, personnel mix, etc.
• Personnel: Wide variety of skills is required in successful multimedia
software development. The core members are a producer, programmer(s),
and graphic artist(s).

To perform preliminary verification of the above framework, a pilot
study was conducted [MacDo98]. Structured interviews were conducted with
three multimedia development organizations. Results suggest the type of
project almost entirely determines development environment and workload.
Results of pilot study were combined with components of GQM framework
to develop a postal survey. The focus is to determine factors that influence
development efforts. It was found that fifty per cent of respondents use no
formal methodology. None of the traditional software metrics is used.
Rather, experience from previous projects is used. Project tracking is
performed at very high level, indicating immature project management.
Staff experience and project size are obviously important factors.
To summarize, 1) traditional software metrics such as COCOMO and

FPA are usually not utilized in multimedia software development; 2) pilot
study and questionnaire reinforce the non-formal approach to multimedia
software development; 3) although there are attempts to formalize the
approach to software development, there is uncertainty on how to achieve
this. In other words, multimedia software engineering as a scientific
discipline is still evolving, making it an exciting research area to explore.

www.manaraa.com

Chapter 3

Syntax: Visual Languages

As mentioned in Chapter I, a multimedia application is constructed from
a collection of multimedia objects. The primitive objects are media objects
of the same media type. The complex multimedia objects are composed
from these primitive objects and in general are of mixed media types. The
syntax of a multidimensional language ML describes how the complex
multimedia objects are constructed from the other multimedia objects.
Spatial and temporal composition rules must be taken into consideration.
Before we consider such a multidimensional language for multimedia

objects, we may begin with a visual language for visual objects. For one
thing, there has been considerable research on visual languages. For
another, many multimedia applications are still primarily oriented towards
visual objects.
A visual language is a pictorial representation of conceptual entities and

operations and is essentially a tool through which users compose iconic, or
visual, sentences [Chang95b]. The icons generally refer to the physical
image of an object. Compilers for visual languages must interpret visual
sentences and translate them into a form that leads to the execution of the
intended task [Chang90]. This process is not straightforward. The compiler
cannot determine the meaning of the visual sentence simply by looking at
the icons. It must also consider the context of the sentence, how the objects
relate to one another. Keeping the user's intent and the machine's
interpretation the same is one of the most important tasks of a visual
language [Crimi90].

www.manaraa.com

30 Chapter 3

1. ICONS

A visual sentence is a spatial arrangement of object icons and/or
operation icons that usually describes a complex conceptual entity or a
sequence of operations. Object icons represent conceptual entities or groups
of object icons that are arranged in a particular way. Operation icons, also
called process icons, denote operations and are usually context-dependent.
Figure 1 illustrates a visual sentence that consists of horizontally arranged
icons, with a dialog box overlaid on it. This particular location-sensitive
visual sentence changes meaning when the locations of icons change, and
can be used to specify to-do items for TimeMan, a time-management
personal digital assistant. Figure 2 illustrates a content-sensitive visual
sentence for TimeMan. The fish in the tank are object icons, each of which
represents a to-do item, and the cat is an operation icon that appears when
there are too many fish in the tank (the to-do list is too long). On the other
hand, Figure 4 in Chapter 4 illustrates a time-sensitive visual sentence that
changes its meaning with time.

Figure J. This figure is a location-sensitive visual sentence that shows how the placement of
the "school" icon changes its meaning. Here the meaning is "The children study in the
morning." In Figure 2 of Chapter 4, the meaning is "The children drive to school in the

morning." Such visual sentences can be used to specify to-do items for the time management
personal digital assistant TimeMan.

www.manaraa.com

3. Syntax: visual languages

2. OPERATORS

31

Icons are combined using operators. The general form of binary
operations is expressed as XI op X2 =X3, where the two icons XI and X2 are
combined into X3 using operator op. The operator op = (opm, opp), where 0pm
is the logical operator, and opp is the physical operator. Using this expanded
notation, we can write (xmJ, Xpl) op (Xm2, Xp2) = ((Xml opm Xm2), (Xpl 0pm Xp2)).
In other words, the meaning part Xml and Xm2 are combined using the logical
operator opm, and the physical part Xpl and Xp2 are combined using the
physical operator 0pp.

Figure 2. Content-Sensitive visual sentence shows the fish-tank-and-cat metaphor for the time
management personal digital assistant TimeMan. Each fish represents a to-do item.

www.manaraa.com

32 Chapter 3

Figure 3. When the to-do list grows too long, the fish tank is overpopulated and the cat
appears. The fish tank icon and cat operation icon have corresponding index cells receiving

messages from these icons when they are changed by the user (see Chapter 4).

Operators can be visible or invisible. Most system-defined
spatial/temporal operators are invisible, while all user-defined operators are
visible for the convenience of the user. For example, excluding the dialog
box, the visual sentence in Figure 1 is the horizontal combination of three
icons. Therefore, it can be expressed as:

(CHILDREN hor SCHOOL_HOUSE) hor SUNRISE

where hor is an invisible operator denoting a horizontal combination. But if
we look at Figure 2, the cat is a visible operator denoting a process to be
applied to the fish in the fish tank. An operation icon can be regarded as a
visible operator.
The four most useful domain-independent icon operators are ver, for

vertical composition; hor, for horizontal composition; ovl, for overlay; and
con, for connect. ver, hor and ovl are usually invisible, and con is usually
visible as a connecting line.
The invisible icon operators are spatial operators and apply only to icons

or ticons. The spatial composition of two icons or ticons is a complex icon.

www.manaraa.com

3. Syntax: visual languages

3. REPRESENTING MEANING

33

To represent the meaning of an icon, we use either a frame or a
conceptual graph, depending on the underlying semantic model of the
application system being developed. Both are appropriate representations of
meaning, and can be transformed into one another. For example, the
SCHOOL_HOUSE icon in Figure 1 can be represented by the following
frame:

Icon SCHOOL_HOUSE
WHO: nil
DO: study
WHERE: school
WHEN: nil

In other words, the SCHOOL_HOUSE icon has the meaning "study" if it
is in the DO location, or the meaning "school" in the WHERE location. Its
meaning is "nil" if it is in the WHO or WHEN location. An equivalent
linearized conceptual graph is as follows:

[Icon =SCHOOL_HOUSE]
--(sub)--> [WHO =nil]
--(verb)-> [DO =study]
--(loc)--> [WHERE =school]
--(time)-> [WHEN =nil]

The meaning of a composite icon can be derived from the constituent
icons, if we have the appropriate inference rules to combine the meanings of
the constituent icons. We have applied conceptual dependency theory to
develop inference rules to combine frames [Chang94b]. We have also
adopted conceptual operators to combine conceptual graphs [Chang89]. As a
simple example, the merging of the frames for the icons in the visual
sentence shown in Figure 1 will yield the frame:

Visual_Sentence vSl
WHO: children
DO: study
WHERE: nil
WHEN: morning

We can derive this frame by merging the frames of the four icons using
the following rule:

www.manaraa.com

34 Chapter 3

The imslot gets the value of the corresponding slot of the ith icon.

Thus the first slot with sloCname WHO gets the value "children" from
the corresponding slot of the first icon CHILDREN, the second slot with
sloCname DO gets the value "study" from the corresponding slot of the
second icon SCHOOL_HOUSE, etc.

www.manaraa.com

Chapter 4

Syntax: Multimedia Languages

Visual languages, which let users customize iconic sentences, can be
extended to accommodate multimedia objects, letting users access media
dynamically. Teleaction objects, or multimedia objects with knowledge
structures, can be designed using visual languages to automatically respond
to events and perform tasks like "find related books" in virtual library
Bookman.
Languages that let users create custom icons and iconic sentences are

receiving increased attention, as multimedia applications become more
prevalent. Visual language systems let the user introduce new icons, and
create iconic sentences with different meanings and the ability to exhibit
dynamic behavior. With a graphical user interface, the user must generally
compose commands with predefined icons, which limits the range of
commands and makes dynamic composition rather difficult. It is also
awkward to customize such commands without cluttering the screen. These
limitations are significant in multimedia applications because the user must
often access multimedia information dynamically with very few icons.
At the University of Pittsburgh and Knowledge Systems Institute, we

have developed a formal framework for visual language semantics that is
based on the notion of icon algebra and have designed several visual
languages for the speech impaired. In Chapter 3 we described the underlying
grammar for a visual language. We have since extended the framework to
include the design of multidimensional languages - languages that capture
the dynamic nature of multimedia objects through icons, earcons (sound),
micons (motion icons), and vicons (video icons). The user can create a
multimedia message by combining these icons and have direct access to
multimedia information, including animation.

www.manaraa.com

36 Chapter 4

We have successfully implemented this framework in developing
Bookman, an interface to a virtual library used by the students and faculty of
the Knowledge Systems Institute. As part of this work, we extended the
visual language concepts to develop teleaction objects, objects that
automatically respond to some events or messages to perform certain tasks
[ChangH95b]. We are continuing work on extensions to the visual interface
in the context of emergency management, where the information system
must react to flood warnings, fire warnings, and so on, to present multimedia
information and to take actions [Khali96].

Figure 1. The BookMan interface to a virtual library lets the user select different search
modes.

Figure 1 shows the search and query flexibility possible with the
Bookman interface. In addition, users can perform a range of tasks,
including finding related books, finding books containing documents similar
to documents contained in the current book, receiving alert messages when
related books or books containing similar documents have been prefetched
by BookMan, finding other users with similar interests or receiving alert
messages about such users (the last function requires mutual consent among
the users) etc. In developing the interface, our goal was to give users the

www.manaraa.com

4. Syntax: multimedia languages 37

same range of freedom they might experience in a real library. Much of this
power stems from the use of TAOs.

1. WHAT TELEACTION OBJECTS DO

To create a TAO, we attached knowledge about events to the structure of
each multimedia object - a complex object that comprises some
combination of text, image, graphics, video, and audio objects. TAOs are
extremely valuable because they greatly improve the selective access and
presentation of relevant multimedia information. In BookMan, for example,
each book or multimedia document is a TAO because the user can not only
access the book, browse its table of contents, read its abstract, and decide
whether to check it out, but also be informed about related books, or find out
who has a similar interest in this subject. The user can indicate an intention
by incrementally modifying the physical appearance of the book, usually
with just a few clicks of the mouse.
TAOs can accommodate an almost limitless range of functions. For

example, when the user clicks on a particular book, it can automatically
access information about related books and create a multimedia presentation
from all the books.
The drawback of TAOs is that they are complex objects and therefore the

end user can not easily manipulate them with traditional define, insert,
delete, modify, and update commands. Instead, TAOs require direct
manipulation, which we provided through a multidimensional language.
The physical appearance of a TAO is described by a multidimensional

sentence. The syntactic structure derived from this multidimensional
sentence controls its dynamic multimedia presentation. The TAO also has a
knowledge structure called the active index that controls its event-driven or
message-driven behavior. The multidimensional sentence may be location­
sensitive, time-sensitive or content-sensitive. Thus, an incremental change in
the TAO's external appearance is an event that causes the active index to
react. As I describe later, the active index itself can be designed using a
visual-language approach.

2. MULTIDIMENSIONAL LANGUAGE

The multidimensional language consists of generalized icons and
operators, and each sentence has a syntactic structure that controls the
dynamics of a multimedia presentation.

www.manaraa.com

38 Chapter 4

2.1 Generalized icons and operators

In Chapter 3 we presented the elements of visual languages and descrilled
the icons and operators in a visual (not multidimensional) language. In a
multidimensional language, we want not only icons that represent objects by
images, but also icons that represent the different types of media. We call
such primitives generalized icons and define them as x = (xm, xp) where Xm
is the meaning and xp is the physical appearance. To represent TAOs, we
replace the xp with other expressions that depend on the media type:

• Icon: (Xm, Xi) where Xi is an image
• Earcon: (Xm, xe) where Xe is sound
• Micon: (xm, xs) where Xs is a sequence of icon images (motion icon)
• Ticon: (xm, xt) where Xt is text (ticon can be regarded as a
subtype of icon)

• Vicon: (xm, xv) where Xv is a video clip (video icon)

The combination of an icon and an earcon/micon/ticon/vicon is a
multidimensional sentence.
For multimedia TAOs, we define operators as

• Icon operator op = (op lIb op i), such as ver (vertical composition), hor
(horizontal composition), ovl (overlay), con (connect), surround,
edge_to_edge, etc.

• Earcon operator op = (opm, oPe), such asfade_in,fade_out, etc.
• Micon operator op = (op m, op s), such as zoom_in, zoom_out, etc.
• Ticon operator op =(opm, OPt), such as text_merge, text_collate,
etc.

• Vicon operator op = (op m, op v), such as montage, cut, etc.

Two classes of operators are possible in constructing a multimedia
object. As described in Chapter 3, spatial operators are operators that
involve spatial relations among image, text or other spatial objects. A
multimedia object can also be constructed using operators that consider the
passage of time. Temporal operators, which apply to earcons, micons, and
vicons, make it possible to define the temporal relation [AlIen83] among
generalized icons. For example, if you want to watch a video clip and at the
same time listen to the audio, you can request that the video co_start with
the audio. Temporal operators for earcons, micons, ticons and vicons include
co_start, co_end, overlap, equal, before, meet, and during and are usually
treated as invisible operators because they are not visible in the
multidimensional sentence.

www.manaraa.com

4. Syntax: multimedia languages 39

When you use temporal operators to combine generalized icons, their
types may change. For example, a micon followed in time by another icon is
still a micon, but the temporal composition of micon and earcon yields a
vicon. Media type changes are useful in adaptive multimedia so that one
type of media may be replaced/combined/augmented by another type of
media (or a mixture of media) for people with different sensory capabilities.
We can add still more restrictions to create subsets of rules for icons,

earcons, micons and vicons that involve special operators:

• For earcons, special operators includefade_in,Jade_out,
• For micons, special operators include zoom_in, zoom_out,
• For ticons, special operators include textJol!ate, texcmerge,
• For vicons, special operators include montage, cut.

These special operators support the combination of various types of
generalized icons, which means the multidimensional language can fully
reflect all multimedia types.

2.2 Grammar

Multidimensional languages can handle temporal as well as spatial
operators. A visual language has a relational grammar, G, which a compiler
uses to generate sentences:

G = (N, X, OP, s, R)

where N is the set of nonterminals, X is the set of terminals (icons), OP is
the set of spatial relational operators, s is the start symbol, and R is the set of
production rules whose right side must be an expression involving relational
operators.
To describe multidimensional languages, we extended the X and OP

elements of G: X is still the set of terminals but now includes earcons,
micons, ticons, and vicons as well as icons, and the OP set now includes
temporal as well as spatial relational operators.

2.3 Syntax

Informally, a multidimensional language is a set of multidimensional
sentences, each of which is the spatial/temporal composition of generalized
icons. Figure 2 without the dialog box illustrates a simple visual sentence,
which describes the physical appearance of a multimedia object retrieved by
BookMan. With the dialogue box, the figure becomes a multidimensional

www.manaraa.com

40 Chapter 4

sentence used by BookMan to generate "The children drive to school in the
morning." in synthesized speech. The multidimensional sentence has the
syntactic structure

(DIALOG_BOX co_start SPEECH) ver «(CHILDREN hor CAR) hor
SCHOOL_HOUSE) hor SUNRISE)

Figure 2. A multidimensional sentence whose meaning changes when the icons change their
positions and is therefore a location-sensitive sentence. This sentence has the meaning "The

children drive to school in the morning."

Figure 3 is a hypergraph of the syntactic structure. The syntactic structure
is essentially a tree, but it has additional temporal operators (such as
co_start) and spatial operators (such as hor and ver) indicated by dotted
lines. Some operators may have more than two operands (for example, the
co_start of audio, image, and text), which is why the structure is called a
hypergraph. The syntactic structure controls the multimedia presentation of
the TAO.

www.manaraa.com

4. Syntax: multimedia languages 41

Figure 3. The syntactic structure of the multidimensional sentence shown in Figure 2. This
structure is a hypergraph because some relational operators may correspond to lines with

more than two end points.

Multidimensional languages must also account for multimedia dynamics
because many media types vary with time. This means that a dynamic
multidimensional sentence changes over time.
We defined rules for spatial anQ temporal operators that let us transform

the hypergraph in Figure 3 to a Petri net that controls the multimedia
presentation. Figure 4 represents the Petri net of the sentence in Figure 2. As
such, it also a representation of the dynamics of the multidimensional
sentence in Figure 2. The multimedia presentation manager can execute this
Petri net dynamically to create a multimedia presentation [Lin96]. For
example, the presentation manager will produce the visual sentence in Figure
2 as well as the synthesized speech.

www.manaraa.com

42 Chapter 4

Figure 4. A time-sensitive visual sentence for the Petri net controlling the presentation of the
multidimensional sentence shown in Figure 2.

3. KNOWLEDGE STRUCTURE

An index cell is the fundamental building block of the active index,
which is the key element of a TAO [Chang95a]. Without the active index, a
TAO would not be able to react to events or messages, and the dynamic
visual language would lose its power.

3.1 Cell communication

An index cell accepts input messages, performs some action, and posts an
output message to a group of output index cells. Depending on its internal
state and the input messages, the index cell can post different messages to
different groups of output index cells. Therefore the connection between an
index cell and its output cells is dynamic. For example, if a Bookman user
wants to know about new books on nuclear winter, he modifies the visual
sentence, causing TAO to send a message to activate a new index cell that
will collect information on nuclear winter.
An index cell can be either live or dead, depending on its internal state.

The cell is live if the internal state is anything but the dead state. If the
internal state is the dead state, the cell is dead. The entire collection of index

www.manaraa.com

4. Syntax: multimedia languages 43

cells, either live or dead, forms the index cell base. The set of live cells in the
index cell base forms the active index.
Each cell has a built-in timer that tells it to wait a certain time before

deactivating (dead internal state). The timer is re-initialized each time the
cell receives a new message and once again becomes active (live). When an
index cell posts an output message to a group of output index cells, the
output index cells become active. If an output index cell is in a dead state,
the posting of the message will change it to the initial state, making it a live
cell, and will initialize its timer. On the other hand, if the output index cell is
already a live cell, the posting of the message will not affect its current state
but will only re-initialize its timer.
Active output index cells mayor may not accept the posted message. The

first output index cell that accepts the output message will remove this
message from the output list of the current cell. (In a race, the outcome is
nondeterministic.) If no output index cell accepts the posted output message,
the message will stay indefinitely in the output list of the current cell. For
example, if no index cells can provide the BookMan user with information
about nuclear winter, the requesting message from the nuclear winter index
cell will still be with this cell indefinitely.
After its computation, the index cell may remain active (live) or

deactivate (die). An index cell may also die if no other index cells (including
itself) post messages to it. Thus the nuclear winter index cell in BookMan
will die if not used for a long time, but will be re-initialized if someone
actually wants such information and sends a message to it.
Occasionally many index cells may be similar. For example, a user may

want to attach an index cell to a document that upon detecting a certain
feature sends a message to another index cell to prefetch other documents. If
there are 10,000 such documents, there can be ten thousand similar index
cells. The user can group these cells into an index cell type, with the
individual cells as instances of that type. Therefore, although many index
cells may be created, only a few index cell types need to be designed for a
given application, thus simplifying the application designer's task.

3.2 Cell construction

To aid multimedia application designers in constructing index cells, we
developed a visual-language-based tool, Ie Builder, and used it to construct
the index cells for the BookMan interface. Figure 5 shows a prefetch index
cell being built. Prefetch is used with two other index cell types to retrieve
documents [Chang95a). If the user selects the prefetch mode of the
BookMan interface, the active index will activate the links to access
information about related books. Prefetch is responsible for scheduling

www.manaraa.com

44 Chapter 4

prefetching, initiating (issuing) a prefetching process to prefetch multimedia
objects, and killing the prefetching process when necessary.

Figure 5. The visual specification of the state transitions for an active index cell of the virtual
library's user interface BookMan.

Figure 5 shows the construction of the state-transition diagram. The
prefetch index cell has two states: state 0, the initial and live state, and state ­
1, the dead state. The designer draws the state-transition diagram by clicking
on the appropriate icons. In this example, the designer has clicked on the
fourth vertical icon (zigzag line) to draw a transition from state 0 to state O.
Although the figure shows only two transition lines, the designer can specify
as many transitions as necessary from state 0 to state O. Each transition
could generate a different output message and invoke different actions. For
example, the designer can represent different prefetching priority levels in
BookMan by drawing different transitions.
The designer wants to specify details about transition2 and so has

highlighted it. Figure 6 shows the result of clicking on the input message
icon (top icon to the right of the State Transition Specification Dialog box.)
Ie Builder brings up the Input Message Specification Dialog box so that the
designer can specify the input messages. The designer specifies message 1
(start_prefetch) input message. The designer c.ould also specify a predicate,
and the input message is accepted only if this predicate is evaluated true.
Here there is no predicate, so the input message is always accepted.

www.manaraa.com

4. Syntax: multimedia languages 45

Figure 6. The visual specification of the input message for an active index cell of the virtual
library's user interface BookMan.

Figure 7 shows what happens if the designer clicks on the output message
icon in Figure 5 (bottom icon to the right of the State Transition
Specification Dialog box). Ie Builder brings up the Output Message
Specification Dialog box so that the designer can specify actions, output
messages, and output index cells. In this example, the designer has specified
three actions: compute_schedule (determine the priority of prefetching
information), issue_prefetch_proc (initiate a prefetch process), and store_pid
(Once a prefetch process is issued, its process id or pid is saved so that the
process can be killed later if necessary).

www.manaraa.com

46 Chapter 4

Figure 7. The visual specification of the output message and actions for an active index cell of
the virtual library's user interface BookMan.

In the figure, there is no output message, but both input and output
messages can have parameters. The index cell derives the output parameters
from the input parameters.

4. DYNAMIC VISUAL LANGUAGE FOR
QUERYING

When the user makes incremental changes to a multidimensional
sentence, certain events occur and messages are sent to the active index. For
example, suppose the user clicks on a book TAO to change the color
attribute of the book. This is a select event, and the message select is sent to
the active index. If the user creates a new related_info operation icon, this is
a related_info event, and a message prefetchJelated_info is sent to the

www.manaraa.com

4. Syntax: multimedia languages 47

active index. The incremental changes to a multidimensional sentence can be
either:

• Location-sensitive. The location attribute of a generalized icon is
changed.

• Time-sensitive. The time attribute of a generalized icon is changed.
• Content-sensitive. An attribute of a generalized icon other than a
location or time attribute is changed or a generalized icon is added or
deleted, or an operator is added or deleted.

A visual sentence or multidimensional sentence can also be location­
sensitive, time-sensitive, or content-sensitive. Chapter 3 gives examples of
different types of visual sentences. The resulting language is a dynamic
visual language or dynamic multidimensional language.

..
~

os: CD CD ::r ." 3
~

m

" :> ~. "
.. " '"5 !a a 01 2 '"Ii 0 c. ..

'" () :> !!. l: I..
E; '" I :> :; a

~ '" II. <: 0

Figure 8. The BookMan interface to a virtual library lets the user browse the virtual library
and select desired book for further inspection.

A dynamic visual language for virtual reality serves as a new paradigm in
a querying system with multiple paradigms (form-based queries, diagram­
based queries and so on) because it lets the user freely switch paradigms
[Chang94a]. When the user initially browses the virtual library, the VR
query may be more natural; but when the user wants to find out more details,

www.manaraa.com

48 Chapter 4

the form-based query may be more suitable. This freedom to switch back
and forth among query paradigms gives the user the best of all worlds, and
dynamic querying can be accomplished with greater flexibility.
From the viewpoint of dynamic languages, a VR query is a location­

sensitive multidimensional sentence. As Figure 8 shows, BookMan
indicates the physical locations of books by marked icons in a graphical
presentation of the books stacks of the library. What users see is the same
(with some simplification) as what they would experience in a real library.
That is, the user selects a book by picking it from the shelf, inspects its
contents and browses adjacent books on the shelf.
In Figure 1, initially the user is given the choice of query paradigms:

search by title, author, ISBN, or keyword(s). If the user selects the virtual
library search, he can then navigate in the virtual library, and as shown in
Figure 8, the result is a marked object. If the user switches to a form-based
representation by clicking the "DetailedRecord" button, the result is an item
in the form of Figure 9. The user can now use the form to find books of
interest, and switch back to the VR query paradigm by clicking the "VL
location" button in Figure 9.
Essentially, the figure illustrates how the user can switch between a VR

paradigm (such as the virtual library) and a logical paradigm (such as the
form).
There are certain admissibility conditions for this switch. For a query in

the logical paradigm to be admissible to the VR paradigm, the retrieval
target object should also be an object in VR. For example, the virtual reality
in the Bookman library is stacks of books, and an admissible query would be
a query about books, because the result of that query can be indicated by
marked book icons in the virtual library.
Conversely, for a query in the VR paradigm to be admissible to the

logical paradigm, there should be a single marked VR object that is also a
database object, and the marking is achieved by an operation icon such as
similar_to (find objects similar to this object), near (find objects near this
object), above (find objects above this object), below (find objects below this
object), and other spatial operators. For example, in the VR for the virtual
library, a book marked by the operation icon similar_to is admissible and
can be translated into the logical query "find all books similar to this book."

www.manaraa.com

4. Syntax: multimedia languages 49

Figure 9. The BookMan interface to a virtual library also lets the user switch to a traditional
form-based query mode.

5. DISCUSSION

Visual query systems for multimedia databases, like Bookman, are under
active investigation at many universities as well as industrial laboratories.
These systems are extremely flexible. For example, a user can easily and
quickly ask for any engineering drawing that contains a part that looks like
the part in another drawing and that has a signature in the lower right corner
that looks like John Doe's signature. In fact, in our work on Bookman, we
plan to build a mechanism that will let users create similarity retrieval
requests that prompt Bookman to look for books similar to the book being
selected.
We have implemented the active index for BookMan to support optional

modes like prefetching. We can also extend BookMan to perform searches
on the World Wide Web using a Web browser enhanced with an active index
[Chang95a].

www.manaraa.com

50 Chapter 4

We have also used our multidimensional language framework to design
user interfaces for personal digital assistants. Chapter 3 described TimeMan,
a personal assistant that performs time-management functions. Just as books
in BookMan are teleaction objects, so are calendars in TimeMan. We used a
multidimensional language to describe the external appearance of a TAO
calendar, and provided an active index to manage to-do items.

In summary, visual languages and multidimensional languages are useful
in specifying the syntactic structure, knowledge structure, and dynamic
behavior of complex multimedia objects such as TAO. As multimedia
applications become widespread, we expect to see more visual query
systems in which multidimensional languages will play an important role,
both as a theoretical foundation and as a means to explore new applications.

www.manaraa.com

Chapter 5

Semantics: The Active Index

In multimedia computing, an important issue is how to index multimedia
objects, so that the multimedia objects can be accessed quickly and certain
actions can be performed automatically. In conventional database systems,
keyword-based indexing techniques are adequate to support users' needs. In
multimedia information systems, there are many applications that cannot be
properly supported by keyword-based techniques. In addition to keywords,
users often want to access/manipulate multimedia objects by shape, texture,
spatial relationships, etc. That is, certain features of the multimedia objects
are used as indexes, and, in many cases, they cannot be represented as
keywords. The representation of these feature-based indexes poses some
special problems:

(1) Indexes are approximately represented.

(2) Indexes do not have an implicit ordering, in the sense that if a, b and
c are three index values and a < b < c, it does not mean that multimedia
object b is more similar to visual object a than multimedia object c.

(3) Indexes may have interrelated multiple attributes.

Faced with these problems, the conventional indexing structures such as
B-tree, hashing, etc. cannot be used for the organization of indexes for
multimedia objects. New indexing structures must be explored which should
also support similarity retrieval. Moreover, the index structures should be
highly flexible and dynamic, with the following characteristics:

www.manaraa.com

52 Chapter 5

(a) Active index instead of passive index: The index can be used to
perform actions.

(b) Partial index instead of total index: Only a few multimedia objects are
indexed.

(c) Dynamic index instead of static index: The index can evolve, grow
and shrink.

(d) Visible index instead of transparent index: The user is aware of the
existence of the index, perhaps as part of the knowledge structure. So the
index is not necessarily transparent.

(e) Imprecise index instead of precise index: The index can be used in
processing imprecise or approximate queries.

This chapter introduces a theoretical framework for the active index. The
theoretical framework is introduced in Section 1. To illustrate its application
to the Smart Image System, in Section 2 we present a three-level active
index. With an active index, we can effectively and efficiently handle smart
images that can respond to accessing, probing, and other actions. The
application to information retrieval in hyperspace is discussed in Section 3.
The computation power of the active index is analyzed in Section 4. The
active index can be used to realize Petri nets, generalized Petri nets such as
G-nets, B-trees, etc., but the dynamic nature of the active index makes it
even more powerful and flexible. The reversible index introduced in Section
5 facilitates feature-based indexing. An experimental active index system
has been implemented, whose main features are described in Section 6. In
Section 7, further research topics are discussed.

1. FORMAL DEFINITION OF THE ACTIVE INDEX

An index cell base (ICB) consists of a (possibly infinite) number of index
cells. An index cell (ic) accepts input messages and performs some
computation. It then activates another group of index cells, and posts the
output message to these output index cells. If some of these output index
cells have already been activated, they may simply accept the output from
the current index cell. The first output cell that accepts the output message
will remove it from the output list of the current cell.
After its computation, the index cell may remain active (live), or de­

activate itself (dead). An index cell will also become dead, if it remains

www.manaraa.com

5. Semantics: The Active Index 53

inactive for a certain period of time, i.e., if no other cells (including itself)
send messages to it.
An active index (IX) consists of a finite number of index cells ic from

ICB. Thus an active index IX is a finite subset of the (possibly infinite) index
cell base ICB. When the active index is in actual computation, it consists
of a time-varying collection of index cells in different states, accepting
certain input messages and posting output messages to the output lists. To
describe precisely the behavior of the active index, we will first formally
define an index cell.

Definition 1: An index cell is described by ic = (X, Y, 5, sO, A, tmax, f, g)
where:

X is the set of input messages including dummy input d.
Y is the set of output messages including dummy output d.
5 is the set of states. 5 includes a set of ordinary states 5 and a special

state Sdead called the dead state. If an index cell is in the dead state, it is a
dead index cell. Otherwise it is a live index cell.

So in 5 is the initial state of the index cell ic. A is the set of action
sequences that can be performed by this index cell.
tmax is the maximum time for the cell to remain live, without receiving

any messages. If tmax is infinite, the cell is perennial.
f is a function: 2x x 5 -> {O, I} where 2x is the power set of input X. If

f({XI '00" xm}, s) is 1, then the cell accepts the input set { XI '00" xm} and X)'oo.,
Xmare removed from the output lists of those cells that produce these output
messages. The removal of messages is an atomic action that will occur
simultaneously. If f({x),oo., Xm}, s) is 0, the input messages are not accepted.
When several input sets can be accepted, one is chosen non­
deterministically.
g is a function: 2x x 5 -> 21CB X Y X 5 x A such that given input

messages {Xl '00" xm} which have been accepted, i.e., f({Xl,.", xm},s) = 1,
and current state s, g(x,s) is a quadruple (Ie, y, s', a) where
(1) Ie is a set of output index cells to be activated. If an output index cell

is in the dead state, it is changed to the initial state so that it becomes a live
cell, and the clock t is initialized to be tmax• If an output index cell is already
live, its current state remains unchanged, but its clock t is re-initialized to be
tmax ' If an output index cell is the special symbol nil, no output index cell is
actually activated.
(2) y is the output message for the output index cells in Ie. The output

could be the dummy message d, when the~e is no real output to the output
index cells. The first output index cell that accepts this output message y
will remove it from the output list of ic.

www.manaraa.com

54 Chapter 5

(3) s' is the computed next state of ic. The true next state s of ic is the
dead state if clock time t becomes zero or negative, and s' otherwise. If the
next state s' is the dead state, the index cell becomes dead.

(4) a is the action-sequence performed by this index cell, which can be
regarded as the output of the cell to the external environment.

Definition 2: The output list oL of an ic is of the following form: [(lei,
YI), (le2, Y2), ... , (lem, Ym)], where Yi is the output message posted to the ic's in
the set lei. If any ic in lei accepts yi, the tuple (lei, Yi) is removed from the
output list.

Definition 3: An index cell base ICB is a (possibly infinite) collection of
index cells. Given an index cell base ICB, an active index IX is a finite
subset of ICB with n index cells, denoted by an n-place ic vector ic = (ic"
iC2, ... , icn), where the iCi'S are ordered by their (arbitrary) subscripts in ICB.

Definition 4: The instantaneous description id of an an active index IX is
denoted by id = (ic, s, oL), where ic is the ic vector, S is the corresponding
state vector, and oL is the corresponding output list vector.

Definition 5: The trace of an active index IX with respect to (ico, So, oLo)
is:

(ico, So, oLo) =>
(ic" s" oL I) =>

where (iCi, Si, oLi) => (ic l+" SI+" oL1+1) due to the acceptance of input
messages by an index cell. The => symbol reads as "is transformed into".
Such transformations may occur in any arbitrary order. Each

transformation step in the trace takes exactly one clock cycle.
If the trace is finite, the active index IX is terminating with respect to (ico,

So, oLo); otherwise it is nonterminating.
Therefore, an active index is initially specified by (ico, so, oLo) where ico

is the initial ic vector, So is the initial state vector and oLo is the initial output
list vector.
For example, we can start with a single index cell, so that the active index

initially starts with (ico, So, oLo), where So is the initial state of ico, and the
output list oLo is empty. Let f({}, so) be 1, so that ico will accept an empty set
as input. Let f(V, so) be 0 for any non-empty V. If we intend to activate
index cells in Ie and post a message y to them, it can be done by an
appropriate g function. After that, icoenters a state Ssleep, where no input will

www.manaraa.com

5. Semantics: The Active Index 55

be accepted. The tmax can be set to infinity. In other words, the sole purpose
of ico is to activate some index cells and post a message to them. By adding
states to ico appropriately, we can also make ico post individual messages to
each of the activated index cells.

Observation 1: An index cell ic can be modified to post n messages
individually to n output index cells.

Proof Suppose f({xi ,... , xm }, s) = 1 and we want to post messages Yi
individually to iCi , 1 :s; i :s; n, and then change state to st. Let Sl , S2, ... , Sn-I
be n-l new states. Replace the original g({xJ,... , xm}, s) = (Ie, y, s', a) by ~he

following: g'({XI,"., xm}, s) =({ic l }, yJ, Sl, a).
We can construct f and g' as follows:

f({}, SI) = 1 and f(O, s") = 0 if s";t: SI
g'({}, Sl) = ({ iC2 }, Y2, S2, nil)
f({}, S2) =1 and f({}, s") =0 if s" ;t: S2
g'({},S2) =({ iC3 }, Y3, S3, nil)

f({}, Sn-I) = 1 and f({}, s") = 0 if s" ;t: Sn-I
g'({} ,Sn-I) = ({ iCn }, Yn , s', nil)

Therefore, the ic will go through the states SJ, ... , Sn-I and post the
messages individually to the output ic's, and then change state to s'. •

Notation 1: As a notational convenience, we will write the quadruple as
(Ie, W, s', a), where the cardinality of Ie and W must be identical, i.e., Ie =
{ic l , ... , icn}, W = {YI ,... , Yn}, to indicate that each Yi is posted to each iCi
individually.

Notation 2: As a further notational convenience, we will allow Ie and W
to be lists. If Ie is of the form [ic, ... ,ic], this means the messages Yi are all
posted to the same ic. If W is of the form [y, ... ,y], this means the same
message Yis posted to each iCi individually.
The above notation enables us to specify the posting of a message Y

either to an individual ic, or to a group of ic's. In particular, a message can
be posted to a certain type of ic, if we do not yet know the identity of the
individual ic.
The external environment may also send messages to the active index. In

particular, the action sequence may cause the external environment to send
messages to some of the index cells, including the index cell that performs

www.manaraa.com

56 Chapter 5

the said action sequence. This can be modelled by activating a special ic,
similar to the ico described above, to send messages to some of the index
cells.

2. THE ACTIVE INDEX FOR THE SMART IMAGE
SYSTEM

An active index is a dynamically changing net. As we shall see in
Section 4, active index can be used to realize Petri nets, generalized Petri
nets (G-nets), B-trees, etc. But its primary purpose is to serve as a dynamic
index. We now illustrate by an example.
In current visual information systems, images don't have the capabilities

to automatically respond to situational changes occurred in their
environments. With advances in software and hardware technologies,
images can playa more active role in their applications. For example, in the
medical domain, after the examination of a patient's nuclear image, a doctor
may want to compare images of the same patient at different states
(exercising, normal, excited, etc.), then to examine images in the time
domain (past histories), and finally to check images from other modalities.
Instead of having the doctor to retrieve these relevant images with explicit
queries and to convert and highlight the images properly, an active image
can monitor the doctor's actions and provide the necessary information in
proper formats on time.
To improve the effectiveness and efficiency of visual information

systems, images should invoke actions by themselves. Depending upon
applications, they can move themselves into proper local storage, pre­
process themselves into the appropriate representations, and display
themselves on the screen at the right time.
A smart image is an image with an associated knowledge structure,

where knowledge includes attributes, routine procedures for how the image
is used, and dynamic links to other objects for performing related actions.
A smart image knows what actions to take based on the user's interaction

with the image and on the environmental changes to the images.

2.1 Smart Image Design for Large Image Databases

To illustrate how the active index can be applied to the Smart Image
System, let us describe the 3-level active index for the Smart Image System,
using the theoretical framework presented in Section 1.

www.manaraa.com

5. Semantics: The Active Index 57

2.1.1 Level-l Index

The level-I index is to pre-perform certain operations and specifically to
prefetch image data. For each smart image, only one level-l index cell can
be activated. The input to this ic is the set of user messages of interest. A
relevant user message regarding a smart image will be sent to this ic. This
user message will (I) cause the ic to activate the appropriate level-2 ic, (2)
post an output message to that level-2 ic, and (3) change state to the
appropriate next state.
For example, if the ic is in Sangio and the user message indicates a

Stenosis condition, then the ic will activate the level-2 iCmulti-modality, send an
output message Image:Angio, Abnormality:Stenosis to iCmulti-modality, and
change state to Smuga. The action of this ic in state Sangio is to prefetch all
muga images of the patient.
The states in this level-I index cell are the global states. Once the ic

enters a global state, a selected group of the next level index cells can be
activated. In the above example, the states correspond to the different image
modalities, because when the user is viewing an image of a given modality,
the index cell must be in that state, i.e. such states are observable.

State Exam Name Hotspot Next State

1
2

3

4

5

START
Angio Ang.Hed.OOl

Ang.Liv.OOl
Angioma

Arteriosclerosis
Cicaterization

Hemolysis
Myoma

Stenosis
Muga Anaeurysm

Angioma
Anomaly

Arteriosclerosis
Hemolysis

Hyperthropy
Mug.Hrt.OOl
Mug.Hrt.002
Mug.Hrt.003
Mug.Hrt.004

Myoma
Stenosis

Nuclear Anomaly
Myoma

Nuc.Mug.OOl
Nuc.Mug.002
Nuc.Mug.003
Stenosis

END

END
Angio
END

Angio
Angio
Angio
Nuclear
Muga

Nuclear
Muga
Angio
Angio

Nuclear
Nuclear

END
END
END
END

Nuclear
END
END
END
END

Angio
END

Angio

Figure 1. State transitions for the level-l index.

www.manaraa.com

58 Chapter 5

The state transitions for the level-1 index cell are given in Figure 1. As
illustrated in Figure 1, from the current state, depending upon the user's input
message (the condition), we can prefetch all relevant images of a given
modality. Thus from State 2, if the condition is Stenosis, then we prefetch
all the muga images of a specific patient and go to State 3. Figure 2
illustrates the relationships among images, hotspots and level-1 active index.

Create Hotspot

LEVEL-l INDEX

o ANGlO 0
XRAY ECHO

Angio image

MUGA 0o NUCLEAR

ECG

Action

Prefetching Muga Images

~·-·.1:
.. ~., H

. ,

Figure 2. Relationships among images, hotspots and level-l active index.

There may be too many muga images to be prefetched. Can we prefetch
only a subset of these muga images? It depends on the following: (i) the
filtering algorithm, (ii) the way images are organized in the class hierarchy,
and (iii) the index cell construction algorithm.

www.manaraa.com

5. Semantics: The Active Index 59

Since the level-l index cell is essentially a finite-state machine, there are
effective learning algorithms to construct the cell from the past history of
user messages. In principle, we can record every click made by the user as
well as every text, voice or annotation messages. In practice, we use filters
to extract the appropriate user messages and record them in the history. A
moving window is kept, so that the recent history is used by the learning
algorithm to construct the finite-state machine for the index cell. For
example, the filtering algorithm may only extract user's identification of
abnormality and accessing of image data: (Abnormality=Stenosis,
Retrieve=Muga image taken on date-x), from the following history:

Doctor Name: Douglass A. Young
Patient Name: David Straker
SSN: 152-83-2745
SEX:M
Date of Birth: Sep 15 1953
Angio Image: Ang.Hrt.OOl, taken on Dec 19 1991, EID#=MHT-OOOIO
CREATE_HS
Abnormality: Stenosis
RETRIEVE_IMAGE
Muga Image: Mug.Hrt.003, taken on Dec 101991, EID#=MHT-00030

In the smart image class hierarchy, images are divided into: (a) recent
images (within one month), (b) fairly recent images (within one year), and
(c) archival images (within ten years). The simplest index cell will just
define a next state corresponding to ALL nuclear images. The more
sophisticated index cell will have next states corresponding to (a) (b) and (c).
The index cell construction algorithm will test whether date-x satisfies (a)
(b) or (c) and then constructs the cell's next state(s). With this refined
construction algorithm, only those images that are in (a), (b) or (c) will be
prefetched.

2.1.2 Level-2 Index

The level-2 index is to perform hotspot-triggered actions in multi­
modality study. If the user will make known to the system what study is
being conducted, such as Coronary Artery Disease, Ventricular Function,
and so on, the appropriate level-2 index cells will be activated based on the
particular study.
A hotspot in a smart image, when triggered, may send messages to a

level-2 index cell. For example, the input to an ic iClefcventriculautudy is the set
of hotspot conditions such as abnormality, and quantitative data obtained
from the image processing routine. An appropriate hotspot condition will

www.manaraa.com

60 Chapter 5

(l) cause the ic to activate another ic in level-2 or an ic in level-3, (2) post an
output to that ic, and (3) change to dead state to de-activate itself.

o
Comn;ary Anery Disca...e
Study

Nuclc;u-

Nuclear

ldt Vo:mricular Function
Study.

Aflgio LEVEL-2 INDEX
(Multi-modality siudy)

LEVEL-3INDEX

Figure 3. Level-2 active index.

Figure 3 illustrates the level-2 active index. In Figure 3, the active index
is shown as a net of index cells. It should be emphasized that the arcs in this
net are dynamic. Output arcs are specified when a live cell accepts and
processes the input. They can change dynamically.
For example, the hotspot condition: LV_eniargemencabnormaiity, and

heart volume quantitative data in nuclear image and the hotspot condition:
Stenosis_abnormality, and low ejection fraction quantitative data in angio
image, when triggered, will (1) cause the ic to activate the level-3 ic, (2) post
the appropriate output message to the level-3 ic, and (3) de-activate
iCleti_ventriclIlautucty. Another hotspot may cause the ic to activate different
output cells.
By using the technique of abstraction, we can combine the simpler cells

into more complex cells with multiple input such as for multi-modality
study. Similarly, some image processing functions may require multiple
images as input. The detection of LV Enlargement and Stenosis in two
different images may require two separate image processing functions. The
two functions may be disjoint, and no image fusion is required. We will just
test the logical predicates in the above example. On the other hand, for some
cases image fusion will be required, and we must register the images,
perform nonlinear transformations to correlate images, etc.

www.manaraa.com

5. Semantics: The Active Index

2.1.3 Level·3 Index

61

The level-3 index is to perform automatic linking and the retrieval of
related and sometimes unanticipated information. When the user requests
information (by clicking on some button), a message is sent to the ic. The
input to an ic is therefore the set of retrieval requests. An appropriate
retrieval request will (1) cause the ic to activate another (possibly remote) ic,
(2) post an outpt;t message to that ic, and (3) change to initial state. The
action is to send information to the original requester.
For example, the ictumor, with the initial input message tumocfound, may

initiate a retrieval request, to retrieve all related information on that patient,
and present it to the original requester (the physician who is interacting with
the Smart Image System).

Figure 4. Annotation

Annotation as illustrated in Figure 4 could be considered unanticipated
information. When an active index automatically performs linking and
prefetching operations, unanticipated information can be included. or not
included. When the physician is making a decision, he needs the right
amount of unanticipated information, but certainly he does not want every
single new case in the medical journals. Thus, the active index with the
appropriate action sequence determines what links to be established, and

www.manaraa.com

62 Chapter 5

what amount of information to be prefetched. Such flexibility makes the
Smart Image System responsive to users' needs.
The function of the level-3 index is quite similar to that of the active

index for information retrieval in hyperspace, which will be explained in the
following section.

3. THE ACTIVE INDEX FOR INFORMATION
RETRIEVAL IN HYPERSPACE

To retrieve information in the hyperspace, which is represented by a
hyperstructure, we can associate an index cell with every recently accessed
node in this hyperstructure. Thus the ICB corresponds to the set of all nodes
in the hyperstructure, and IX a finite set of recently accessed nodes.
In a recent experiment, two months of tracing Mosaic usage in a

university department show that about 40-45% of Mosaic files are accessed
with high frequency. A relevant subset of the Mosaic objects transferred
from remote servers are often used by other NCSA Mosaic clients. (In the
university environment, the often looked-for information items are call-for­
papers, books or technical announcements, new computer systems, etc.)
Therefore, to improve the system performance, frequently accessed

information items should be prefetched and kept in the local cache.
The index cell can be constructed as follows:
It accepts a query qk if k > 0, and activates the adjacent index cells, and

posts qk-I to them. The action performed is to prefetch information items
satisfying the query.
A further refinement is to prefetch information items above a certain size.

The justification is that we need only prefetch large information items, and
small information items need not be prefetched.
As an example, if the original query is q3, only cells within a distance of

two links may be activated. Since we are posting a query to all the adjacent
cells, if one of them accepts the query, the rest will no longer be able to
process this query. Therefore, only three ic's on the following single path
will be activated:

If we post queries individually to the adjacet:tt cells, the result is to
activate all ic's where the distance from any ic to ICq3 is no more than two
links. Consequently, more information items will be prefetched.
Both the viewer and the designer of a hyperstructure can add knowledge

to the index cell as follows.

www.manaraa.com

5. Semantics: The Active Index 63

The viewer of the hyperstructure can send messages to the active index.
For example, a clicking on a document indicates the invocation of a
hyperlink. Certain index cell can then be activated.
We may also allow the viewer to add annotation to certain objects. In

this case, the viewer can modify (a part ot) g to activate the cell
corresponding to the annotation object.
The designer of the hyperstructure can of course modify the g function to

decide what new cells to activate. Thus, g contains the designer's
knowledge. Therefore, the g function is central in capturing both the
viewer's knowledge and the designer's knowledge.
The function g allows us to either add new cells to the system, or to stay

with a predefined set of cells. We can set tmax to infinity, and exclude from g
the dead state, so that index cells always remain live. We can further
stipulate that g maps only to cells in IX. Thus the system can become a
static index system.
On the other hand, if no query is posed, with finite tmax 's after a while all

index cells will become dead. In other words, the active index is active, only
as long as there are messages sent to the cells (or, to put it simply, only as
long as there are users interested in certain information nodes of the
hyperstructure) .
From the above two examples, it can be seen that the major difference

between an active index and a static index is that the active index is a
dynamic collection of live index cells. The active index will change with
time, as new index cells are activated and current index cells are de­
activated.

4. THE COMPUTATION POWER OF THE ACTIVE
INDEX

The active index is a powerful computing device. Its interconnections
are dynamic, which makes it different from many other computing devices.
By suitable restrictions, it can be used to realize Petri nets, the previously
defined active index structure, conventional index structure such as the B­
tree and a generalized Petri net called the G-net.
However, it is more general than all of the above, because in the active

index the arcs are not fixed and static and may change dynamically.

www.manaraa.com

64 Chapter 5

4.1 It can realize the Petri net

Suppose the Petri Net is specified by (P,T,I,O) where P is the set of
places, T is the set of transitions, I is the input function for the transition, and
o is the output function for the transition.
We can construct an active index as follows: in the index cell base ICB,

there are cells iCPi corresponding to the places Pi , and cells i\ correspond~ng
to the transitions tj . The active index IX consists of ico and these cells ICPi
and ICtj . Furthermore, they are perennial. The cell ico is used to initialize the
active index.
For each index cell iCPi corresponding to the place Pi> iCPi will accept any

input x, because input can only come from transitions. Mter acceptance of
. h 11 ic . h . d 11' Tr h ic.. Tr .fIllput, t e ce Pi activates t e output Ill. ex ce s III Pi> were tj IS III Pi 1
tj is the output transition of Pi. The cell1cPi then posts (Trpi> xPi) to the output
list.
For each index cell iCtj corresponding to the transition tj, it will accept the

input set { xP1 , xp2,..., xPm } where ,each Pi is the input place of transition tj.
After a~ceptance of input, the cell ICtj activates the output inde.x cells in P\,
where ICPi is in P\ if Pi is the output place of tj. The cell 1\ then posts
(ccpd, \) to the output list, for each ICPi in P\In other words, by
Observation 1 of Section 1, the transition tj can send messages individually
to each output place Pi.

4.2 It can realize the previously defined active index
structure

An active index structure can be defined to be a set of active index cells
connected by arcs. Each cell has a number of input slots and output slots.
Each input slot is connected to the output slot of another cell, and each
output slot is connected to an input slot of another cell. The connected pair
of input and output slots must have the same predicate. A cell R is enabled if
tokens satisfying the input predicate flow into the cell. When the cell R is
fired, one token each will flow to the input slot of another cell provided that
the token satisfies the output predicate. When several input slots have
identical predicates, they must all have tokens satisfying the predicate,
before R is enabled.
The active index structure can be transformed to the equivalent Petri net

where input slots with identical predicates are converted to input places for
the same transitions, and output slots are converted to transitions leading to
output places. But the current formulation of an active index is more natural
and can be used directly to describe the originally conceived active index
structure.

www.manaraa.com

5. Semantics: The Active Index 65

Basically, f({x), X2, X3},S) is 1, if XI, X2 and X3 are inputs to the cell, and
pred(xi, X2, X3) is true. We can then post the output message to the output
slot(s).
The current formulation is more general than the previously defined

active index structure. The restriction of fixed input/out relationships has
been removed. Index cells can be added/deleted dynamically, so that the
active index varies in time.

4.3 It can realize conventional index structures

For example, the B-tree can be described by an active index. The
technique is to provide different input to the index cell for the B-tree (called
a B-cell). One input to B-cell indicates the insertion mode, and the other
indicates the search mode. Other conventional index structures (index
sequential, index direct, etc.) can also be described using similar techniques.

4.4 It can realize the G-Net

The active index system is conceptually derived from the G-Net system
where each G-Net may invoke another G-Net. Therefore, each G-Net
corresponds to an active index cell. When a G-Net is invoked, it accepts the
input message. When it completes its computation, it sends messages back
to the invoking G-net, and then de-activates itself. Furthermore, if we
introduce the various levels of abstractions into G-net, we can also describe
class hierarchies and other abstraction structures. This leads to
methodological considerations in specifying the active index cell, the input
message space X and output message space Y.

5. THE REVERSIBLE INDEX FOR FEATURE­
BASED INDEXING

The level-2 active index shown in Figure 3 can be used for feature-based
indexing. When a feature is detected in an image, a hotspot is triggered to
send a message to an index cell, which in tum may send output messages to
other cells.
Conversely, if we want to retrieve images having that feature, we need to

reverse the flow in the index structure. In this section, we describe how to
construct such a reversible index.

www.manaraa.com

66 Chapter 5

Suppose iCj posts output message Xi to ic, 1 ~ i ~ m. If we want to
make ic accept these m messages as input, then f({xl, ... , xm}, 1) = I.We can
tag every input message as (iCj, Xi), so that the input message also indicates
where it comes from. Thus we have the following modified f function,

f({(ie t ,Xt), ... , (icm, xm>}, 1) =1.

Similarly, we can also tag the output message of this ic as follows,
g({(iCI' XI), ... , (icm, xm)}, 1) = (le', (ic,y), s', a) if one output message y is
posted to all the ic' in Ic'; or (le', {(ie') ,y / 1), ... , (ic'n ,y / n)}, s', a) if the
output y / j is posted individually to each iC'j in le', 1 ~ j ~ n.
For notational convenience, let le ={ie" ... , icm), V ={XI, ... , Xm}, IcV =

{(ic t , XI), ... , (icm, xm)},Ic' ={ic'" ... ,ic'n), W ={y" ... , Yn}, and le'W ={(
iC'I, y,), ... , (ic'n, Yn)}.
We can now describe the reversible index cell as follows.
Case 1: One output is posted to n output cells. For the original index cell,

input f(leV,s) = 1, and output g(leV,s) =(le, (ic,y), s', a). For the reversible
index cell, we modify f and g as follows: input f({(ic'j, y)}, r) = 1 for 1 ~ j
~ n, and output g({(ic'j, y)}, r) =(Ie', IcV, r', b),where r, r' are new states
corresponding to s, s', respectively. In other words, the reversed ic will
accept y as the input, and posts Xi to iCj individually as the output.

Case 2: An individual output for each output cell. For the original index
cell, input f(leV,s) = 1, and output g(IcV,s) = (le', Ic'W, s', a). For the
reversible index cell, we modify f and g as follows: input f(le'W,r) = 1, and
output g(le'W,r) =(le, leV, r', b), where r, r' are new states corresponding to
s, s', respectively. In other words, the reversed ic will accept {y) ,... , Yn} as
the input, and posts Xj to iCi individually as the output.

In both cases, the action sequence b is left to be designed. If we first
apply forward index to detect certain feature in an image, and then apply
reverse index to find images having this feature, we can find images that are
similar to the said image - similar in the sense of having the same features.
Likewise, we can use forward index and then reverse index to find
documents similar to a given document in the World-Wide-Web.

6. AN EXPERIMENTAL ACTIVE INDEX SYSTEM

The active index is a conceptual model. In actual implementation,-the
active index can be incorporated into almost any application system. For the
Smart Image System, for example, the hotspot lends itself to a natural
coupling with the active index, in the sense that once a hotspot is triggered, a

www.manaraa.com

5. Semantics: The Active Index 67

message is posted and the corresponding index cell is activated. For the
Mosaic application, the clicking on a hotword has similar effects.
We have built an experimental active index system. The heart of the

active index system is the IC_Manager, which performs the functions of
receiving incoming messages, activating index cells, performing actions, and
handling outgoing messages.
As illustrated in Figure 5, although in theory iCI can directly send

message mj to iC2, and iC2 can directly send message m2 to iC3 residing in
another machine, in practice every message must go through the
IC_Manager.

machine boundaL)'

IC Managc.-l

mi.1
". I

J I t.. m*2
~~

m2 IC Managc.-2
I
I

:m2

@

Figure 5. The IeManager.

Another implementation approach is to realize each cell as a separate
process, but that will result in costly interprocess communication overheads.
Since efficiency is a major concern, that approach was not adopted.
The core of the IC_Manager is described as follows:

IC_Manager(message)
begin
if message contains ic_id
begin /*the message is for a specific ic that should already exist*/
locate ic_id in IX;
add message to input_list; end ;

if message contains ic_type
begin /*the message is for an ic to be created*/
locate ic_type in IeB;
create a new ic_id;
add a new ic instance to IX;
add message to inpuclist of this ic;
add ic_id to the outpuClist of the output ic; end;

while there is next ic_id in IX

www.manaraa.com

68 Chapter 5

begin check whether message should be accepted;
if message should be accepted
if messa~e has not been accepted by another ic
begin accept this message and remove it from outpuClist;
process this ic; end

end
end

In theory, the index cell base ICB can be infinite. In practice, It IS
necessary to maintain a library ICB of a fairly small number of generic ic's,
so that the user can create customized cells with ease.
For the Smart Image System, it is also necessary to have a separate

collection of generic index cells for each level of the three-level index.
The ICB and IX are implemented as linked lists of C structures.

Whenever there is a request to activate (or create) a new index cell, a new
cell is obtained from an available list space. Conversely, a dead cell is
returned to the available list space.
The IC_Manager has a domain-independent part and a domain-specific

part. The domain-specific part contains the specific routines used by the ic's
to perform predefined actions. It also identifies and structures the external
messages to be sent to the IC_Manager.
This clean separation of domain-independent and domain-specific parts

makes it easy to adapt the IC_Manager to a new application system.
The IC_Manager is written in standard C codes and can easily be

compiled together with the intended application system, on workstations as
well as PCs, to produce a customized application system with built-in active
index.
Another important tool is the IC_Builder, which is a visual user interface

enabling the designer to visually design new index cells from scratch, or
customize an ic based upon a generic ic from ICB. This tool was introduced
in Chapter 4 and will be described in detail in Chapter 8.
For a WWW client such as the Mosaic, we can invoke the active index

from Mosaic, so that the user's clicks generate retrieval requests. For
information retrieval in hyperspace, the simplest approach is to use only
level-3 index cells to link and retrieve information. Figure 6 illustrates the
experimental Mosaic-IC at work, where the background window on the right
displays the trace of instantaneous descriptions of the active index, and the
action_icons in the upper-right corner show the actions performed.

www.manaraa.com

5. Semantics: The Active Index

--- BEFORE ---
------- BEGtN Ie ----
id: 4
Ie type: ole
current state: SO
~~i~l~~III:~"~OO SO "'-O --j
Input list:
(ic id. xl .. (:5. 3)

output list;
------- DID Ie -----
Act lve Ie 4 perfor.u; act ions:
6: COMPUTE POT8HTIAL UIUo
3: UPDATE tisETLINKEDFRoH:

--- AFTER ';".. -
------- BEGIN IC -------
ld: 4

it: type: DIC
current state: sO
Initial state: SO
max. l1llle: 100
inx>ut list:
output list:
lie, yl .. (t. 1)
Cle. y) .. (1. 81

• ------- END Ie -------
I « Hessage IS processed.. please hit return to oontlnue. »

Int-ernsl Hessaqe (generated by ic 4):

-- MESSAGE BEGtH ---
IIIflag .. le_IO
IUtLtype .. ACCESS_Ie
Itype .. HIe
sender" 4
receiver" I
(X)fl.tent ...591

--- KESSAG£ END ---
« A nev .ess.ge OOIIIes up. please hit return to see the su
equent process. »

-_.. BEFORE ---
------- BEGtN Ie -------
id: 1
Ie type: HIe
current state: SO
inittal litilte: SO
aax. tl•• : 100
input list:
(ic id. xl .. (4, 1)
(u:ld. x) .. (-1. 0)

output list:
------- END Ie -------

Figure 6. The experimental Mosaic-Ie system.

69

For further research, the user can be modeled using level-l index, the
information abstracted using level-2 index, and information items linked and
selectively presented using level-3 index. Moreover, using the reversible
index, we can find documents similar to a given document. Special generic
cells can be designed, to do range-based retrieval and incremental
knowledge acquisition.
In implementing the experimental active index system, we decided to

provide each cell with an internal memory. Theoretically, the internal
memory and the state together define the true state of the cell. In practice, it
is more convenient to have an internal working memory, so that the cells can
cope with different situations flexibly. The internal memory is a C structure,
so that the user can include special routines in the domain-specific part of the
IC_Manager to manipulate it.
Using the experimental active index system, we quickly produced

custornized Smart Image System (SIS-IC), Mosaic (Mosaic-IC), B-Tree
(BT-IC) and Medical Personal Digital Assistant (MPDA-IC). Thus the
experimental active index system serves as a prototyping tool to enhance
application systems with active indexes.

www.manaraa.com

70 Chapter 5

7. DISCUSSION

The active index introduced in this chapter possesses the following
desirable characteristics: (a) The active index can be used to initiate actions
and is active rather than passive. (b) Only a few index cells are activated as
needed, so the index is partial rather than total. (c) The index is dynamic and
can evolve, grow and shrink. (d) The index cell can send messages to the
user in its action sequence and therefore the index can become visible to the
user. (e) Finally, with the reversible index, the active index can be used to
process imprecise queries and perform similarity retrieval.
The following topics require further research: (a) The index cell reversal

technique described in Section 5 enables us to extract features from an image
to construct feature-based index cells, and then retrieve images containing
such features using these index cells. The feature-based index cells, like
other index cells, have a finite lifetime. If they don't receive any messages
for a while, they die. Dead index cells can either be eliminated, or archived
to tertiary storage. Therefore, the system will not be burdened with
excessively large indexes. The algorithms for index cell reversal need to be
carefully designed, so that we can perform feature extraction and feature­
based indexing using the same index structure.
(b) The time bound tmax limits the size of the active index, so that it will

not grow too large. Inactive cells of the active index will be removed or
archived automatically. A research issue is to study the stability of time­
varying active indexes. Under what conditions will an active index become
dead? Moreover, how can we adjust tmax so that the index is always below
the storage constraint?
(c) The knowledge is contained in the two functions f and g. The

function f restricts the inputs to be processed. The function g specifies the
output, what cells to activate, next state and the action seq~ence. When, for
example, the designer or the viewer of a hyperstructure wants to add
knowledge to the cells, we need algorithms to allow incremental addition of
knowledge by systematically modifying the g function.

www.manaraa.com

Chapter 6

Semantics: Teleaction Objects

Teleaction Objects (TAOs) possess private knowledge specific to the
object instances. The user can create and modify the private knowledge of a
Teleaction Object, so that the Teleaction Object will automatically react to
certain events to pre-perform operations for generating timely response,
improving operational efficiency and maintaining consistency. Moreover,
Teleaction Objects also possess a hypergraph structure leading to the
effective presentation and efficient communication of multimedia
information. The Active Multimedia System (AMS) is designed to manage
the Teleaction Objects. In the AMS, the private knowledge of each
Teleaction Object is realized by the index cells of Active Index. The
applications to smart multimedia mail and multimedia information retrieval
are described to illustrate the usefulness of Teleaction Objects.

1. INTRODUCTION

We describe the Teleaction Object (TAO) which is a multimedia object
with associated hypergraph structure and knowledge structure. Recently
distributed multimedia systems have become a common requirement for
more and more applications [Berra90]. Although different media types have
different characteristics in the size, resolution, storage method, transmission
method, compression algorithm, presentation technique, etc., two central
problems are common regardless of the application: presenting multimedia
information effectively and transmitting multimedia information efficiently.
It is therefore desirable to have a common approach for multimedia data
modelling, which can lead to the solution of both problems [Little90a]
[Znati93]. Teleaction Object, with its rich classifications of node types, media

www.manaraa.com

72 Chapter 6

types, and link types in the hypergraph structure, enables us to design
algorithms to decide the priority in both communication and presentation for
multimedia information according to the current environment and
restrictions. With the different levels of knowledge specified by the system
and the end-user, the TAO can react automatically to certain events.
An Active Multimedia System (AMS) is designed based upon the

concept of TAOs [ChangH95b]. The AMS provides mechanisms for
manipulating the TAOs so that the system can gather the private knowledge
from a TAO instance and merge it into the knowledge base. The AMS
provides mechanisms for maintaining the knowledge so that the TAO can
automatically react to certain events to pre-perform operations for generating
timely response, improving operational efficiency and maintaining
consistency. The AMS also provides the tools so that the user can create
his/her own TAO, and implement his/her own applications to handle the
TAO. The Teleaction Object is a conceptual model. In actual
implementation, the Teleaction Object can be implemented as objects in an
object-oriented system. For a Multimedia Mail System, for example, a mail
can be regarded as a Teleaction Object.
The approach of Teleaction Object model can support and improve many

applications. For example, in the global information system such as the
World-Wide Web (WWW) [Bemers-Lee92], the user can navigate in the
hyperspace supported by the network. But the major limitation is that the
information-requesting mechanism constrains any transaction between the
user and system to be passive. The Teleaction Object approach can be
incorporated with the WWW browser such as the Mosaic. Therefore, the
knowledge part will support the active actions in network information
systems, such as two-way interaction [Dimit94], or pre-fetching.
Another application domain for Teleaction Object is delayed

conferencing [Hou94]. The objective for delayed conferencing is to allow a
group of participants to exchange information, including existing and newly
created information, in a timely and consistent manner. Such delayed
conferencing is based on the multimedia-based message delivery mechanism
and exchanged information consisting of multimedia objects. Current
multimedia mail systems plus groupware systems [Borenstin92]
[Goldberg92] may support delayed conferencing. However, the limitation is
that the system only executes/takes actions when the message is read by the
recipient, or when the recipient answers certain questions. There are
occasions when it is required to take action even before a message is read, or
the recipient's environment is changed. The user should be allowed to define
the event and the condition for actions to take place. The Teleaction Object
approach can be applied to delayed conferencing because it supports

www.manaraa.com

6. Semantics: Teleaction Objects 73

multimedia information exchange and maintains the knowledge at different
levels to automatically react to the events.
This chapter is structured as follows. The next section gives the

definitions and the motivation of the definitions for a Teleaction Object with
both hypergraph structure and knowledge structure. Section 3 presents a
scenario to explain how the Teleaction Objects work in the Active
Multimedia System. The system architecture of the Active Multimedia
System is described in Section 4. Based on the Active Multimedia System
and the Teleaction Object approach, a working Smart Multimedia Mail
application is illustrated in Section 5. Section 6 discusses application to
multimedia information retrieval where an index cells hierarchy leads to
user-specific pre-fetching of multimedia information. Section 7 discusses
some of the contributions and identifies ongoing and future research.

2. DEFINITION OF TELEACTION OBJECTS

A Teleaction Object can be as simple as a single piece of information
without connection or relation to any other objects. Or we can combine
several TAOs in certain connections into a new complex TAO and/or add
certain knowledge to a TAO. Basically, the TAO is further refined as two
parts (G, K): hypergraph G and knowledge K. For a TAO, the hypergraph G
is used to describe the connections and relations between the sub-TAOs
within it. The knowledge K is used to describe the actions.
The Active Multimedia System AMS is a system that manipulates and

maintains the Teleaction Objects and also provides the basic tools and
methodology such that users can implement their own applications to handle
the TAOs. The AMS is similar to the operating system of a computer, but
instead of allocating and maintaining the resources AMS allocates and
maintains TAOs. Section 4 will give the details of AMS architecture.

2.1 Definition of TAO Hypergraph Part

The hypergraph structure G plays an important part in TAO. Basically G
is a graph structure (N, L), where N is a set of nodes and L is a set of links.
Each node in G represents another Teleaction Object (TAO) and a link
represents a specified relation or connection between these TAOs. By further
refining the types of nodes, media and links, we can utilize this hypergraph
structure for the dual purposes of regulating multimedia communication and
generating multimedia presentations.

www.manaraa.com

74

(a) Node types

Chapter 6

There are essentially two types of nodes in the hypergraph structure G:
basic node and composite node.
A basic node is defined as a terminal node in the hypergraph structure.

The real media data is associated with the basic node and each basic node
contains one and only one media data type. In other words, the basic node is
the smallest unit of a TAO. For example, an image is a basic node. The
media types for the basic node are defined below in (b).
A composite node is defined as a non-terminal node in the hypergraph

structure. It contains a number of basic nodes and/or composite nodes. The
composite node is a group of data instead of a single real media data. For
example, a book chapter is a composite node in the hypergraph structure of a
book because it contains sections, pictures and tables. By using the
composite nodes, we not only can present the hierarchy of the multimedia
object, but also can apply knowledge to a group of multimedia objects.

(b) Media types

Each media type has different characteristics of size, cost, user interface,
storage hardware, interpretation, etc. Since applications choose different
media types under different situations and considerations, knowing. the
media type is helpful for the system to optimize its performance. In our
system, we define media types for the basic node in TAO as: text, graphics,
image, moving-graphics, moving-image, audio, video, form and live-demo;
while composition is for a composite node.

• text is coded alphanumeric data. It is the most basic media type for most
multimedia applications.

• graphics is formatted picture data.
• image is pixel formatted picture data.
• moving-graphics, also cal1ed animation, is the formatted data of a graphics
sequence.

• moving-image is a sequence of image frames.
• audio is formatted sound data.
• video is a combination of synchronized moving-image and audio.
• form restricts user input, possibly with additional formula to generate the
content automaticalIy.

• live-demo is a program that can be run to provide an interactive demo.
• composition is the media type of a composite node in TAO.

www.manaraa.com

6. Semantics: Teleaction Objects

(c) Link types

75

We represent the specific relations and connections between nodes by
using different types of links: attachment link, annotation link, reference
link, location link and synchronization link.
An attachment link links a composite node A and another node B which

is either a basic node or a composite node. It indicates that node B is a
component of node A. This is the essential relationship between nodes in a
multimedia hypergraph structure.
An annotation link links node A with node B, and both nodes can be

basic node or composite node. This type of link specifies node B is an
annotation associated with node A. The annotation has a different meaning
from that of the attachment because the annotating node is an explanation or
a synopsis of the annotated object, but it is not a necessary component
required to construct the annotated node.
A reference link specifies there should be a navigation path from one

node A to another node B when the user is browsing in the hypergraph
structure G. Node B should be a node with no bundled node (to be explained
later) as its ancestor.
A location link specifies the spatial relationship between nodes for their

presentation. The number of nodes linked by a location link can be more
than two and the type of each node can be basic node or composite node. We
have developed a fuzzy relation language FRL [ChangH95a] to describe the
spatial relationship in both horizontal and vertical directions. For example,
image A and image B are located side by side and touching one another in
the horizontal direction, which can be expressed by the location link with the
relation language such as "X: A] == [B".
A synchronization link specifies the temporal relationship between nodes

for their presentation. The number of nodes linked by a synchronization link
can be more than two and the type of each node can be basic node or
composite node. Similar to location links, we can use the same relation
language to describe the temporal relationship for the synchronization links
[ChangH95a]. For example, 5 seconds after image A is displayed we would
like to playa moving-graphics B and an audio C at the same time, which can
be expressed by the synchronization link with the relation language such as
"T: A] < 5 [B; T: [B == [C".
For the purpose of facilitating multimedia presentation, multimedia

communication, hyperlinking, and replacement, there is a special feature for
nodes known as bundled nodes. A bundled node can be either a basic node
or a composite node. A bundled composite-node serves as a single unit with
all its components bundled together. For a bundled basic-node, its sole
purpose is presentation. Using the bundling concept greatly simplifies the

www.manaraa.com

76 Chapter 6

specification of multimedia presentation. For instance, if a basic node
containing audio is a bundled node, it can only be played from the beginning
to the end, and it cannot be played half way. For another instance, if a
composite node containing three basic components (text, image, and audio)
is a bundled node, we cannot just present anyone of its components without
presenting the other two.
A function a_bundle(N) is defined for node N as follows:

=nearest bundled ancestor of node N (excluding itself) in G
a_bundle(N) when traversed along attachment or annotation links from N

=NIL if such node does not exist.

There are two constraints for bundled nodes. The first is regarding the
relation links which are either location link or synchronization link: a
relation link can be established between two nodes Nand M only if (1)
a_bundle(N) is the same as a_bundle(M); or (2) one of them is a_bundle of
the other. The second constraint is regarding the reference links: a reference
link should only link to a node N such that a_bundle(N) = NIL.

~ ~ bundJed composite node

>< iUegallink
--- attachment link
........ _-- annotation link

.- .. location link. or synchronization link
........ .;"..... reference link

Figure 1. Example of legal and illegal links in a hyperstructure.

Bundled nodes have three purposes. First, restricting relation links at
some nodes will retain only the meaningful relations expressed by Fuzzy
Relation Language (FRL) Briefly speaking, FRL is used to express

www.manaraa.com

6. Semantics: Teleaction Objects 77

temporal/spatial relations in presentation between nodes. Without bundled
nodes to limit the use of relation links, many cases would occur which do not
make sense. As explained in Figure 1, the double-edged nodes are bundled
nodes, the lighter arcs represent the relation links, and the crosses indicate
where the relation/reference links are illegal.
Second, restricting reference links at some nodes will maintain the

integrity of presentation. As shown in Figure 1, the dotted arrow linking to
the basic node 'text3' is illegal because 'text3' is one component of the
bundled node 'page3'. The presentation system cannot display 'text3' without
displaying all other components of 'page3'. Thus, the reference link to 'text3'
should be moved up to 'page3'.
Third, replacement of a bundled node by another representation­

equivalent bundled node becomes possible. We can devise algorithms to
replace a bundled node by another bundled node, as long as the presentation
effects are comparable by some measurements. For example, the animation
of a demo can be replaced by a live demo (actually running the program).
Replacing a video by a still image with dubbed sound track is another
possible replacement.

2.2 Motivation for TAO Hypergraph Part

In a distributed environment, communication and presentation of multimedia
objects is both time consuming and space consuming. We need to transfer
and display multimedia objects efficiently, effectively, and properly. For
example, when the network traffic is high, we may send the main content of
a multimedia object first, transmitting important images in low resolution,
and leaving out the less important parts for later transmission. When we
present multimedia objects, we need to know the order of presentation and
possibly pre-fetch other data. In other words, we need to determine the
priority of the transmission sequence and the presentation order for
multimedia objects. Thus, a rich set of node types, media types and link
types will enable us to use the hypergraph structure G to control
communication and organize presentation. An example is given in Section 3.
The different types of nodes and their structure in G provide useful
information of different relationships between the TAOs. It is feasible to
design algorithms to traverse the hypergraph G and determine the
transmission sequence and the presentation order according to the currently
available communication bandwidth, recipient's environment, link types,
node types, media types and structure in G [Lin94].
Given a multimedia hypergraph G, we can apply the following algorithm

to generate its Multimedia Data Schema (MDS) [Lin94], which controls the

www.manaraa.com

78 Chapter 6

synchronization between time-related data streams. The MDS is similar to
the Object Composition Petri Net (OCPN) [Berra90), [Little90a).

I. Let g be the subgraph of the hypergraph G so that nodes in g can be traversed from

the root of G via 'attachment' and 'annotation' links only.

2. For each node n in g, let level(n) be the level of n in the breadth-first spanning tree

ofg.

3. In g, for each synchronization link, which connects two nodes, say Mi and Mj:

3.1. Let Mk defined as Nearest-Common-Ancestor(Mi, Mj), and let

3.2. k =level(Mk).
3.2. /* CASE 1: Ancestor-Descender relationship */

Iflevel(Mi)"# level(Mj) and Mk E {Mi, Mj} /* and assume Mi

= Mk */ then

3.2.1. Let Mj' = Ancestor(Mj) at level k+1.

3.2.2. Propagate temporal information from Mj up to Mj'; and

create a new synchronization relation between Mi and Mj'.

3.3. /* CASE 2: Cousin-Cousin relationship or */

/* CASE 3: Distant relationship */

If (level(Mi) =level(Mj) and level(Mk) + I "# level(Mj)) or
(level(Mi)"# level(Mj) and Mk E {Mi, Mj}) then

3.3.1. Let Mi' =Ancestor(Mi) at level k+ I; and
Let Mj' = Ancestor(Mj) at level k+1

3.3.2. Propagate temporal information from Mi up to Mi' and

3.3.3. from Mj up to Mj'; and create a new synchronization relation between

Mi' and Mj'.

4. Recursively generate MDS by using Algorithm described in [Lin94].

The transitions in MDS indicate points of synchronization and the places
represent the media presentation processing. In other words, we should
present the multimedia objects in a specified order according to the MDS.
Again there are several considerations to generate an effective presentation
sequence, such as the location and synchronization link relation between the
TAOs, computer hardware, capability to display different media type,
storage size etc. An example for MDS is given in Figure 5 of Section 3.

Given a Multimedia Data Schema (MDS), there is an algorithm to
generate its Multimedia Communication Schema (MCS) [Lin94) for an
efficient transmission sequence. There are several considerations to generate
an efficient transmission sequence, such as the size of the TAOs, the type of
the TAOs, the structure of the TAOs, the link relation between the TAOs,
computer hardware, the capability to display different media type, the

www.manaraa.com

6. Semantics: Teleaction Objects 79

storage size, bandwidth of communication, etc. For example, if we adopt the
progressive transmission technique in the communication schema, the low­
resolution image or the low-quality audio will be sent first if the network
traffic is high. Then we try to transmit the higher quality data if possible. For
those nodes connected by a synchronization link, the multimedia objects will
be transmitted according to the synchronization requirements. Also, the
nodes linked by an attachment link should have higher priority than the
nodes linked by the annotation link and reference link because the user may
want to see the content of top-level TAO first. Or the nodes closer to the
currently viewed node should have higher priority than the nodes farther
away from the currently viewed node in the transmission sequence.
Moreover, given a hypergraph G, we can design an algorithm to decide

the pre-fetch sequence in order to improve the efficiency of multimedia
browsing. Thus, only needed data become available based on the currently
viewed TAOs. The pre-fetch sequence is changed dynamically and
performed in the background and does not require monitoring by the user.
From the above discussion, it can be seen that the sets of node types, link

types, and media types will provide the information needed for: (a)
automatic scheduling of synchronization in communication; (b) automatic
generation of proper presentation for specified spatial and temporal relations
and (c) automatic pre-fetching of potential multimedia objects.

2.3 Definition of TAO Knowledge Part

Without specifying the part of knowledge K in a Teleaction Object, a
TAO is just another hyper-media object. In fact, the simplest media object is
a TAO whose hypergraph part is reduced to a simple node and whose
knowledge part is empty. We can classify the knowledge of TAO into four
levels:
System knowledge is associated with all TAO instances. It handles all

generic operations that are applicable to all TAOs. This knowledge defines
the default intent for each TAO. For example, checking the privilege for
viewing each TAO; or keeping the history log; or pre-fetching other TAOs
from remote servers when these TAOs are within a certain distance from the
TAO currently being viewed in the hypergraph G. This knowledge is created
by the system.
Environment knowledge is associated with all TAO instances belonging

to a special user. A user may want to customize his/her AMS operations. So
the user can add or remove some knowledge to his/her local knowledge base.
For example, user A might add a new knowledge to purge TAOs whenever
the system storage is low. The user can also overwrite some system
knowledge, for example, he/she can change the distance criterion for pre-

www.manaraa.com

80 Chapter 6

fetch. The environment knowledge can be generated by either the system or
the user.
Template knowledge is associated with a group of TAO instances in a

predefined format. For frequently used TAO formats, a hypergraph as well
as the associated knowledge can be provided, such as the time scheduler, the
weekly work report generator, the resume, etc. It can be generated by either
the system or the user.
Private knowledge is associated with one special TAO instance. This is

the most important knowledge for the user because it carries individualized
knowledge, which the user has created for the single TAO instance. It is
generated by the user.
There is a local knowledge base for each user. When a user registers for

the first time, AMS will create a local knowledge base for this user and
initialize it with the system knowledge. After that, the environment
knowledge is merged, withdrawn or overwritten into the local knowledge
base. As time goes by, lots of template knowledge and private knowledge
will be merged into or removed from local knowledge base when the TAOs
become alive/dead. Therefore, the knowledge base is local because after the
initialization, the inclusion of different environment knowledge, template
knowledge and private knowledge leads to different user's local knowledge
base.
For a Teleaction Object TAO instance, as discussed in previous sections,

it is represented by the (G, K) pair. The knowledge part K of a TAO instance
could be either the template knowledge if the TAO is a predefined template
instance, or the private knowledge if the TAO is an individual TAO instance.
When the Teleaction Object (G, K) becomes available, K is merged into the
user's local knowledge base. Similarly, when the TAO becomes unavailable,
the corresponding K should be withdrawn from the user's knowledge base.
When a TAO moves from one user A's local knowledge base to another user
B's local knowledge base, K will be copied into B's local knowledge base.
With a better algorithm, part of the K will be merged into A's local
knowledge base and part of K will move along with the TAO and be merged
into B's local knowledge base.
Conceptually, there is a priority for overriding the existing knowledge as

follows: private knowledge, template knowledge, environment knowledge,
and system knowledge, where the private knowledge has the highest priority
and the system knowledge has the lowest priority.

www.manaraa.com

6. Semantics: Teleaction Objects

User A's local
knowledge base

TAO

~ ..~
:.~::.:~

III>'

User B's local
knowledge base

81

Figure 2. User A sends a Teleaction Object to user B.

As illustrated in Figure 2, the solid line indicates the transmission of the
TAO from user A to user B, and the dotted lines indicate the sharing of
private knowledge of TAO in both system A and system B. Private
knowledge has the highest priority to override others in the local knowledge
base.
From the object-oriented point of view, each TAO instance and each

knowledge piece has its own class name. The hierarchy class name is
indicated in the hierarchy, such as "root.TAO.mail". Therefore, once a TAO
instance is available in the AMS system, knowledge with the same class
name and super-class name will be attached to it. If the knowledge pieces
hav..e naming conflicts, the system will use the one with the longest class
name inheriting and overriding knowledge at different levels. For example,
once a TAO instance with the class name "root.TAO.mail" is available in the
AMS, the system will attach the knowledge with class name "root",
"root.TAO", and "root.TAO.mail" to it. And if two knowledge pieces have
the same name, "pre-fetching", but with different class names, one being
"root.TAO" and another being the class name "root.TAO.mail", the system
will attach the one with "root.TAO.mail". In other words, it overrides part of
the inherited knowledge.

In our model, the system knowledge in AMS is implemented with class
name "root" and/or "root.TAO". All the instances of TAO will be attached to
it since each TAO instance has a class name beginning with "root.TAO".
Environment knowledge has the ability to modify/add the knowledge piece
with class name "root" and/or "root.TAO", such that the user can customize
his/her own local knowledge base. Template knowledge is used to build up
new knowledge pieces with a nesting class name, such as "root.TAO.mail"
or "root.TAO.mail.resume". Therefore all TAOs with the same class name in

www.manaraa.com

82 Chapter 6

depth, will be attached with this knowledge piece. Finally the private
knowledge is attached to only one single TAO instance. We can implement
the private knowledge piece with the class name ended with the identical
TAO Id number, e.g. "root.TAO.mail.resume.1234". That means only this
single TAO instance belongs to this class. Therefore, the private knowledge
is attached to this TAO instance only.

2.4 Motivation for TAO Knowledge Part

Although we can abstract some useful information from different types of
nodes, media and links of the TAO to improve the communication and
presentation for multimedia data, without the knowledge part the TAO is just
a complex hypermedia object to be used in a passive way. In order to change
the TAO from being passive to active, we add the knowledge part for a
TAO. Therefore, once a TAO becomes available in the AMS, it will add its
own knowledge to the local knowledge base in AMS. And whenever a
specified event occurs, related actions take place according to the
knowledge. In other words, TAO is an active object.
By using the concept of system knowledge level and environment

knowledge level, we can accomplish a customized system for individual
users. After user's AMS is initialized by the system knowledge, it can be
customized by overriding the system knowledge with environment
knowledge. Since both knowledge levels are associated with class name
"root" and/or "root.TAO", these knowledge pieces are applied to all
available TAO instances in the AMS. Basically, these knowledge pieces are
more related to the environment changing, pre-fetching, or pre-processing.

In certain cases, only the user has the best knowledge on how to manage
the object. Therefore, we allow users to specify the knowledge within one
TAO, which means some special knowledge is associated only with this
TAO but not with any other TAO. This is the object's private knowledge. On
the other hand, some TAOs are expected to share the template knowledge.
Both template knowledge level and private knowledge level are for a special
group of TAOs, the only difference is that a single TAO is in the groups of
private knowledge. Basically, the template knowledge is more related to the
application-specific features, such as mail or resume, while the private
knowledge is related to really personal matter for a special single TAO.
From the above discussion, using knowledge in the TAO model will

allow the objects to become active, and using different knowledge levels will
allow the user to customize AMS and to specify private information. These
features enable the Teleaction Object to become an intelligent active object,
and the AMS to be more flexible.

www.manaraa.com

6. Semantics: TeLeaction Objects

3. A SCENARIO

83

Let us now present a scenario as an example. A project manager Smith is
preparing a proposal for his boss Kessler and his group members Wang and
Larson. His proposal Ml contains several pages of text, audio and images
and also links to a confidential report M2 for his boss Kessler only. Two
annotations about the image are also included in his proposal. The
hypergraph structure of the proposal is shown in Figure 3.

location
X:(imagcl<".OU(annoI ;
Y:[ima~~1 <350(3Ono

synchronization
T:animationl] <2 [audio2

location
Y:vid~I) >20 Icxt4]

Figure 3. The hypergraph structure of the proposal.

In Figure 3, the rectangle denotes a basic node and the rounded rectangle
denotes a composite node. The attachment links indicate the composition of
the composite nodes. For example, the proposal Ml is composed of text,
audio and image data; the confidential report M2 is a bundled node
composed of text and video data; and the annotating object "annol" is
composed of text, audio and animation data. Two annotation links in this
example specify that the image has two annotations on it; one annotation is a
basic node for text data and the other annotation is a composite node. The
reference link indicates there is a navigation path from text of Ml to the
bundled confidential report M2 (in this case, for boss Kessler's eyes only).
Location links specify where the annotations, annol and text2, are with
respect to image1 and specify the layout of the confidential report M2. In the
former case, the location links are between parent nodes and child nodes,
while in the latter case, the location link is between sibling nodes and it

www.manaraa.com

84 Chapter 6

specifies that videol is 20 units above text4. The synchronization link
specifies the temporal ordering in the presentation. In this example, the
synchronization link between animation I and audio2 specifies that the
audio2 should be delayed 2 seconds after having finished playing the
animation I while the two synchronization links between image!, audio I and
text specify they should be started simultaneously for Ml.
According to the hypergraph structure, we develop the Multimedia Data

Schema, shown in Figure 4, when anyone of the group members decides to
browse the proposal MI. Token flow in a Multimedia Data Schema
illustrates the presentation of multimedia objects, while as token flow in a
Multimedia Communication Schema illustrates the transmission of
multimedia objects.

Figure 4. Multimedia Data Schema.

After Smith creates a Teleaction Object Ml with the hypergraph structure
shown in Figure 3, he may want to accomplish several tasks just for this
special proposal Ml only. The tasks are: (pic.a) the boss Kessler and the two
group members should read this proposal in two days and send back their
responses; (pic.b) the responses from Kessler and at least one of the two
group members are needed in order to proceed to the next step in proposal
preparation; and (pic.c) this proposal should become obsolete after one
week. In this case, Smith will include the private knowledge with the TAO.
In our example, there are four local knowledge bases for the four users:

Smith, Kessler, Wang and Larson, respectively. When these four users first
join the AMS, all have the same local knowledge bases that are initialized
with the system knowledge. For example it may include the following
system knowledge: (sic.a) If the user has read part of a multimedia object,
pre-fetch all the information within two hypergraph links from the object
being viewed, in the associated hypergraph structure; (sic.b) If the user
intends to read a part of the multimedia object, check whether the user has

www.manaraa.com

6. Semantics: Teleaction Objects 85

the privilege or not; (sic.c) If any annotation part is added, do the version
control and history checking; and (sic.d) If any multimedia object is
obsolete, remove it.
After each user has the initial local knowledge base, the three other kinds

of knowledge will be merged into, overwritten on, or removed from the local
knowledge base. For example, the following environment knowledge is
added for Smith: (eic.a) If any new TAO contains the keyword "FYI", make
a copy to folder "FYI-1994"; and (eic.b) If the user has read part of a
multimedia object, pre-fetch all the information within three hypergraph
links from the object being viewed, in the associated hypergraph structure
(perhaps because Smith has a larger storage allocation in his system).
The environment knowledge eic.a is merged into the user Smith's local

knowledge base, while the environment knowledge eic.b overwrites the
system knowledge sic.a. Therefore, all the TAO instances available in
Smith's local system are different from that of the other three users because
when a new "FYI" TAO becomes available, Smith's local knowledge base
will have a backup copy in a folder while other's local knowledge base will
not; and TAOs are pre-fetched within three links distance instead of two
links distance in Smith's local system.
Returning to Smith's proposal MI, he creates the private knowledge for

MI and sends it to the other three users. Part of the private knowledge may
go with the message while some knowledge may still be kept in the
knowledge creator's local knowledge base. In our example, the two private
knowledge, pic.a and pic.b, will be sent along with the MI to the recipient's
local knowledge base. In other words, these two private knowledge pieces
will be merged into Kessler's, Wang's, and Larson's local knowledge bases.
As for the last private knowledge pic.c of proposal MI, it is not sent along
with MI, instead it is merged into Smith's local knowledge base. The
concept is also illustrated in Figure 3.
Also in this example, we can expect that the private knowledge pic.c will

override the system knowledge sic.d. If this proposal MI is expired, all
information of MI is stored instead of being removed.

4. THE AMS ARCHITECTURE

We have discussed the two important components of a TAO: the
hypergraph structure G and the knowledge K. In this section, we describe the
AMS architecture that handles and maintains all the TAOs.

www.manaraa.com

86

domain­
$pccifi('

svstem~

sPecilic

Chapter 6

AMS Applications

AMS Tools

~BI Software IEditor Browser Dc\'. Kits ...

AMS Core Local

IEvent Filter II Interpreter II Smart Enginel ... Knowledge
Ba.~e

Figure 5. The architecture of AMS.

The AMS consists of two subsystems: a domain-specific part and a
system-specific part as shown in Figure 6. The system-specific part
performs the generic functions. The application programmers can use the
tools and the generic functions to implement his/her own application with
TAOs. After the TAOs have been generated by this application and passed to
the AMS core, they will be translated, maintained and operated by the
system-specific part.
The AMS provides the basic tools upon which users can implement their

own applications. A browsing tool is provided for the user to browse the
hypergraph G of a TAO. An editor tool is also provided for the user to edit
the hypergraph G of a TAO. Other tools allow users to change the system
knowledge and build up their own environment knowledge. The template
knowledge and private knowledge of TAOs are generated by application­
specific tools. For example, we can implement a Smart Multimedia Mail
application, which is like a mail system but deals with multimedia mail and
also can be associated with private knowledge. In other words, the Smart
Multimedia Mail System generates and handles the TAO as a mail object,
and all the TAOs generated by this mail system are maintained by AMS,
similar to the way files are maintained by an operating system's file manager.
The only difference is that AMS will maintain the TAOs as active objects.
Another example is a simple multimedia calendar. In this case, the
hypergraph part G is not so important, but we can set alarm and a list of
tasks to be performed at appropriate times. For example, instead of only
beeping, a TAO generated by this calendar can also automatically invoke
specified operations.

www.manaraa.com

6. Semantics: Teleaction Objects 87

AMS Core

(. _·-.;····11=',_---,
····..····..·....·..·1 Smart Engine~

Al\'IS Application or Tool

y Application
Application Hand.lec'

Knowledg~Gener~toi

User

Syst~.m

Figure 6. Relation between the AMS application and the AMS Core.

Each AMS tool or user implemented application has the basic
components and the relation with the AMS core, as shown in Figure 6. In
the above diagram, the line separates the architecture into two subsystems
according to the dependence on domain knowledge. The left-hand side is an
application-dependent subsystem, including tools provided by AMS and
applications developed by programmers. Rectangles represent processes
while ellipses represent formatted data. Solid arrows represent knowledge
flow while dashed arrows represent event flow. The application-specific
Application Handler allows the user to create special purpose TAOs and the
Knowledge Generator transforms the knowledge part of these TAOs to the
Formatted Knowledge defined in AMS. Therefore, in the right-hand side, the
application-independent subsystem AMS itself, when a TAO becomes alive
in AMS the Interpreter obtains the formatted knowledge and converts or
merges it into the Local Knowledge Base. The local knowledge base is
modelled by the Active Index that is a collection of index cells (ICs)
[Chang95a] in AMS. At each local AMS system, the Event Filter will
monitor the environment, user behavior, specified events, and internal
messages, then generate the corresponding messages to the Smart Engine,
while the Smart Engine distributes the messages to corresponding rcs in the
local knowledge base to invoke the corresponding actions.

4.1 The Local Knowledge Base

The basic concept of AMS is to respond to the environmental changes
and take corresponding actions according to user defined knowledge, and to

www.manaraa.com

88 Chapter 6

provide a way such that each TAO has it own private knowledge. In other
words, "active" and "private" are the two key ingredients of AMS.
The local knowledge base is defined to be a set of ICs connected by

messages [Chang95a]. An IC accepts input messages and performs some
computation. It then activates another group of ICs, and posts the output
message to these output ICs. If some of these output ICs have already been
activated, they may simply accept the output from the current IC. The first
output cell that accepts the output message will remove it from the output list
of the current cell. After its computation, the IC may remain active (live), or
de-activate itself (dead). An IC will also become dead, if it remains inactive
for a certain period of time, i.e., if no other cells (including itself) send
messages to it. An IC consists of a finite number of ICs. When the IC is in
actual computation, it consists of a time-varying collection of ICs in
different states, accepting certain input messages and posting output
messages to the output lists.
Each IC has two functions: f is an acceptance function that determines

when the IC is enabled and ready to fire. Once all the required messages
become available, f will remove the messages from the output lists of the
message-sending ICs and enable the IC. g is a knowledge function that
performs the firing procedure for the Ie. Once the f enables the IC, g will
take over the control and fire the Ie. According to the messages accepted by
f, the firing procedure will decide (1) the next state of the IC; (2) how to
generate new messages for specific ICs; and most importantly (3) how to
perform a specific action sequence.
The IC is the local knowledge base in AMS. And for each TAO in AMS,

there are corresponding ICs in the AMS

4.2 Formatted Knowledge for TAOs

According to the definition of an IC, g is the knowledge function in each
IC which contains its own finite-state-machine. Basically the g function
accepts the input set of messages, computes the next state, generates any
new message to other ICs, and performs the corresponding action-sequence.
The following BNF definitions show the essential syntax of formatted
knowledge used in AMS. By using the hierarchy class name in the < Class
Name> of < IC Def> production, we can decide which class of TAO the
knowledge function g should be applied to.

< Formatted Knowledge> ::= <Message Def> < Action Def> < IC Set Def>
<Message Def > ::= {EVENT < Event Name> = < Event Expr. > }*
< Action Def> ::= {ACTION < Action Name> {< Param~terList> } }*
< Parameter List> ::= (< Parameter> {, < Parameter> }*)

www.manaraa.com

< IC Set Def>
< IC Def>

< Input>
< Output>
< IC-Message >
<ICSet>
< Message List>
< Action>

6. Semantics: Teleaction Objects

::= < IC Def> { ; < IC De£> }*
::= IC < Type> < ID > < Class Name> < Max Life Time>
<FSM>

< FSM > ::= FSM: < Number of State> < State Trans List>
< State Trans List> ::= < State trans> (, < State trans> }*;
< State trans> ::= (< Current_State>, < Next State>, < Input>, < Output> ,

< Action>) INIL
::= (< Message List>)
::= ({ <lC-Message> }*)

::= (< IC Set> ; < Message List>)
::= <IC> {, <IC> }*

::= < Message> (, < Message> }*
::= (< Action-process List>)

89

4.3 The Application Handler and Knowledge Generator

For each application, we need an application-specific Application
Handler for the end user to work on, and also to provide an easy way to
collect the special knowledge given by the end user and this application.
After the application creates the TAO, the Knowledge Generator transforms
the knowledge gathered from the user to a format suitable for the Interpreter
inAMS.
Generally speaking, we can use the multimedia editor tool provided by

the AMS to generate the hypergraph structure of a TAO. The knowledge part
of a TAO is more application-specific. For example, in a multimedia mail
system, the knowledge is about reading, replying, editing, forwarding a mail,
etc. While in a medical image system, the knowledge is about diagnosis
studies, different image modalities for diagnosis studies, image processing,
etc.

4.4 The Interpreter

For each newly created TAO, the Interpreter will transfer the knowledge
part K from formatted form to ICs and merge into the local knowledge base.
Since the rule set is in a well-defined format, the interpreter can easily
generate customized IC dynamically in AMS. In other words, we can use the
AMS interpreter to generate a new knowledge function g in an IC
dynamically, if necessary.

www.manaraa.com

90 Chapter 6

4.5 The Event Filter

There are numerous events occurring in the system, but for different
applications only some events are meaningful while others are not.
Therefore, we can use an event filter to filter out events and that can be
ignored and allow only meaningful events to enter the AMS.

4.6 The Smart Engine

The Smart Engine maintains the current ICs according to the messages.
Since the message is generated by some events, the AMS system is event­
driven and can respond to the environmental changes automatically. The
message is generated either internally, a result from ICs, or externally, a
result from the event filter. The Smart Engine operates as follows: it takes
messages and distributes to specific ICs, then checks the corresponding
acceptance functions f. If the acceptance function is satisfied, it removes the
messages and invokes knowledge function g to fire the IC and performs the
action sequence.
When the TAO is not available, it indicates that the corresponding IC is

in a dead state, so the Smart Engine needs to remove the IC from the Active
Index, and that IC is then withdrawn from the local knowledge base.

5. APPLICATION TO MULTIMEDIA MAIL

Based upon the AMS, we can implement different applications, e.g.
smart medical image system, home shopping system, real-estate survey
system, etc. In this section, we describe a Smart Multimedia Mail system
(SMM) which is based on both AMS and e-mail system.
In SMM, each multimedia mail is a Teleaction Object. SMM provides a

simple user interface so that the end user can create his/her private
knowledge for individual mail messages. For example, the user can set
alarms for hislher important mail (illustrated by the example described in
Section 3); collect statistical information; re-route the mail to other
recipients; or determine the schedule for a group. The user can also define
template mail with associated template knowledge, such as a weekly report,
sign-up sheet, etc.
The SMM is implemented in four functional blocks as shown in Figure

7. The Mail-Editing and Mail-Browsing blocks can be implemented using
the AMS Editor and AMS Browser tools respectively. Just two blocks are
left for the application designer: Mail-Handling and Mail-Knowledge­
Editing.

www.manaraa.com

6. Semantics: Teleaction Objects

Smart Mullimedia Mall SMM Application

Figure 7. Function diagram of the Smart Multimedia Mail system SMM.

5.1 User Interface of SMM

91

The SMM begins with an ordinary mail-board. The user N can view and
create a multimedia message. When receiving a SMM mail, SMM will pass
the private knowledge associated with this mail to AMS and merge it into
the reader's local knowledge base. Therefore, whenever an event
corresponding to the mail occurs, the Ie in AMS will trigger and perform the
related actions. When the user views a mail, SMM uses the browsing tool
provided by AMS for display and browsing of the mail (a TAO) by the
hypergraph layout window and zoom-in windows for detailed browsing, as
shown in Figure 8. When the user wants to create a new multimedia mail,
SMM also uses an editing tool provided by AMS which supports several
ways to get the media data: from file, from database or from live sources.
Besides creating the multimedia mail, the user can also add his/her

private knowledge to the mail. The knowledge is formally defined in Section
4, but the user should not be burdened with this detailed format. Instead, the
user is provided with an application-specific, easy and friendly user
interface. Therefore, SMM needs to provide its own application-specific user
interface for gathering the information, using its generator to create
formatted knowledge for the private knowledge. Later, the AMS interpreter
transfers and merges the knowledge into the local knowledge base.
Therefore, in SMM two windows are provided for knowledge acquisition.
After the user has composed the new mail content, he/she can add his/her
own knowledge to only this mail. Thus, he/she needs to open the knowledge
window first, as shown in Figure 9.

www.manaraa.com

92 Chapter 6

Mlil-Bxowsl!!

Figure 8. Browsing/Editing in Smart Multimedia Mail system (SMM).

There are two parts for specifying the private knowledge: event sub­
panel and action sub-panel. The event sub-panel specifies the events, and the
action sub-panel specifies the actions. Each panel can accept more than one
statement in 'and' connection. In Figure 9, another dialog window is shown
to gather such information. Basically, we constrain the knowledge solicited
from the user into the following four elements: Who, Doing, To Which
Object, and When. (Currently, 'Who' is restricted to have a single value in
the conjunctive logic clauses for all event statements in the same event sub­
panel.)
The user can use the menu to specify the desired behavior. Moreover, the

user can use the mouse (or cursor) to point at objects to specify what specific
part of the message he/she refers to. This menu-based interface for
specifying the private knowledge of a smart object in SMM is easy to use.
All the user needs to do is to select menu items and to point at the objects
without worrying about the detailed format of the knowledge. Then, SMM
will automatically transform the user's specification into the formatted
knowledge by applying the following algorithm.

www.manaraa.com

6. Semantics: Teleaction Objects

; CKnowl«l~e I Rule I Predicate p:~ ~ II:jI
:I~------Predicates------..------Actions

93

IRecIpient doP.s nut view Hi af't.er 2 d~,g I.Repl!J~ .ace! bat:k

Prediea~Statement t: L~t~!:.r:;l, :=J
When~n_t ,_---.J I (Somebody) I

<> Does '" Docs Not
LIV=-:i=-:ew::-- i [j100'SOiiieiiiiiii\llL
r=,-.,....,.--:-:-;------,. ..J Communicate ;.,
IThis Mail , _.J IlB'OWling I>!View

,jModify SlnIetlIre 1>1 Play
AfterliIa~. , __J UEditing Node Co SlOp Play

: .. _IAnnotate 1QOSC/Exit

~ I: Quitllsr.stem,.. UL- -JMlSC...

jMacro...

Figure 9. Dialog windows for the private knowledge in SMM.

I. Generate EVENT definitions of SMM.
2. Generate ACTION definitions of SMM.
3. Generate the IC Title with the class name "root.TAO.mail" concatenated

with the TAO Id.
/* Assume each sub-panel has one or more statements that are conjunctive */
4. For each statement with "When", use the value of "When" to generate an

alarm and place it into the SendecALARM set or RecipienCALARM set according
to "who".

5. If Sender_ALARM set is not empty, generate the FSM trans:
(StateO, Statel, (SEND), (NIL), (a list of SeCAlarm for all alarms in the
SendecALARM set))

6. IfRecipienCALARM set is not empty, generate the FSM trans:
(StateO, Statel, (ARRIVE), (NIL), (a list of SeCAlarm for all alarm in
the RecipiencALARM set))

7. If both SendecALARM set and RecipiencALARM set are empty,
generate the FSM trans:

(StateO, Statel, (NIL), (NIL), (NIL))
8. For each event sub-panel /* private knowledge*/
8.1. For each statement with "When", generate the FSM trans:
/* setup the alarm & actions*/
(Statel, Statel, (event in this statement), (NIL), (Cancel_Alarm of
related alarm))

8.2. For all statements without "When", generate the FSM trans:

www.manaraa.com

94 Chapter 6

/* setup actions */
(Statel, Statel, (collection of events in all of these statements and all
alarms), (NIL),
(all actions in the action sub-panel))

9. generate the final FSM trans:
(StateO, Dead, (DEL), (NIL), (NIL))
(Statel, Dead, (DEL), (NIL), (Cancel_Alarm of all alarms in all
sub-panels))

I. Generale EVENT definitions of SMM.
2. Generate ACTION definitions of SMM.
3. Generato the IC Trtle w~h Ihe etass name ·lOOt.TAO.mail" concatenated wilh the TAO td.

r Assume each sub-panel has one or more statements which are conjunctive .,
4. For oach statement with "Vt'hen-, use the vatue of WWhen- 10 generato an alarm and pface it into tho

Sender ALARM sel or RecipiencALARM sel according fo "who'.
5. It Send;r-.ALARM sef is not empty, generate the FSM trans:

(Sfateo, Slate I , (SEND), (NtL), (a list 01 SeCAlarm lor all alarms in the Sender_ALARM sell)
6. If Recipient_ALARM set is nol empty. generate lhe FSM Irans:

(Sf3teo, Slate I, (ARRIVE), (NIL), (a list of Sel_Alarm lor an al3rm in Iho Recipienl.ALARM sel))
7. It bolh Sender_ALARM seland Recipienl_ALARM set are empty, generate the FSM trans:

(Stateo, Stale1, (NIL), (NIL), (NIL»
8. For each event sub-jlanel r private knowledge'!

8.1. For each slalomenl w~h "When', generale Ihe FSM trans: r setup the alarm & actions'!
(Slalel, State1, (event in this slalement), (NIL), (Cancel.Alarm of relaled alarm»

8.2. For ell slatements without "When', generale lhe FSM Irans: r setup ections '!
(Stale1, Statel, (collection of events in an otthese statements end all alarms), (NIL),

(all actions in the action sub-penel))
9. generate Ihe final FSM trans:

(Stateo, Dead, (DEL), (NIL), (NIL))
(Stalel, Dead, (DEL), (NIL), (Cancel.Alarm of all alarms in sA sub-panels»

Figure 10, Heuristic algorithm to generate private knowledge in SMM,

5.2 The Knowledge Generator of SMM

After the user fills out the information in the event sub-panel and action
sub-panel, the knowledge generator of SMM will gather all the information
and transform it to the formatted knowledge defined in AMS, Following our
example in Figure 9, the piece of knowledge is: "If the recipient does not
view this mail within 2 days after the mail arrives, then send a message back
to the sender and beep a message to the recipient". By applying the heuristic
algorithm in Figure 10, the corresponding pieces of formatted knowledge
are generated as shown below:

EVENT ARRIVE =

EVENT VIEW = ...

EVENT ALARM2 = ...

EVENT DEL =

www.manaraa.com

6. Semantics: Teleaction Objects

ACTION SeCAlarm(own_IC_Id, duration, evenUabel, ...)

ACTION Cancel_Alarm(IC_Id, event_label, ...)

ACTION Reply_Message(user_Id, message_no,)

ACTION Beep_Message(usecId, message_no,)

IC MI #1234 "root.TAO.mail.#1234" INFINITE_TIME

FSM :{StateO, Statel, Dead}

/* setup alarm when arrival in recipient */

(StateO, StateI , (ARRIVE), (NIL),

(SeCAlarm(own_IC_IdO, 2_days, ALARM2, ...))

/*Cancel alarm when recipient views it */

(Statel, Statel, (VIEW), (NIL), (Cancel_Alarm(own_ICIdO, ALARM2, ...)))

/* Reply and beep if expired */

(Statel, Statel, (ALARM2), (NIL), (Reply_Message(sendecIdO, mesgl, ...),

Beep_Message(own_IdO, mesgl, ...)))

(StateO, Dead, (DEL), (NIL), (NIL))

(Statel, Dead, (DEL), (NIL), (Cancel_Alarm(own_IC_IdO, ALARM2, ...)))

6. APPLICATION TO MULTIMEDIA
INFORMATION RETRIEVAL

95

To retrieve information in the hyperspace which is represented by a
hyperstructure (i.e. a hypergraph structure), we can associate an IC with
every recently accessed node in this hyperstructure. Thus the IC is a finite
set of recently accessed nodes. The IC can be constructed as follows: It
accepts a query and activates the adjacent ICs, and in turn posts queries to
them. The action performed is to pre-fetch information items satisfying the
query. A further refinement is to pre-fetch information items above a certain
size. The justification is that we need only pre-fetch large information items,
small information items need not be pre-fetched. At the University of
Pittsburgh, we have added the IC to Mosaic, creating a new version called
Mosaic-IC which has pre-fetching capabilities. An example of Mosaic-IC is
illustrated in Figure 6 of Chapter 5, where the background window on the
right displays the trace of executions of the IC, and the action_icons in the
upper-right corner show the actions performed.
From the above application examples, it can be seen that the two

important features we introduced in the Active Multimedia System - 'active'
and 'private' - are both realized by the Active Index. In AMS, the users can
specify their private knowledge and then combine that with the system's
knowledge, resulting in greater flexibility in AMS's adaptive behavior.

www.manaraa.com

96 Chapter 6

The 'private' knowledge means polymorphism - certain objects can
obtain reactions different from reactions to other objects even in the same
environment. For example, in the AMS mail system described in Section 5,
the users can specify their private knowledge such as the importance of
different message classes. Therefore, the sender specifies his/her private
knowledge (the importance of message classes) so that if the recipient
forgets to view a particular message, a reminder will show up on both the
sender's and the recipient's screen. Another interesting example is the
inclusion of different levels of pre-fetching methods in Mosaic-IC, which is
the Mosaic browser equipped with ICs. The AMS will provide two basic
levels of pre-fetching methods. For a particular application, users can add
their own pre-fetching methods based on their special considerations.
Basically, the Active Index maintains the 'active' knowledge of AMS. In

order to combine private knowledge with system's knowledge, in the Active
Index we can divide the ICs into groups to form a hierarchy. In this
hierarchy, one class of ICs can share the same methods. Messages sent to
higher level ICs will be handled by the higher level methods. Only when
there is no higher level method, will the message be sent to ICs at lower
levels and handled by lower level methods.
Going back to the previous example of customized pre-fetching methods

in Mosaic-IC, as shown in Figure 11, there are different classes of ICs in the
hierarchy. XICI uses the simplest pre-fetching method of sequentially
retrieving objects. XIC2 uses a smarter pre-fetching method by consulting
both the current system profile and the user profile. XICT is designed to
perform catalog searching, and can pre-fetch information from a special
catalog. Therefore, most users using the Mosaic-IC will only need one or
two levels of pre-fetching. But once the users get into the catalog searching
application, they may need one additional level of pre-fetching.

www.manaraa.com

6. Semantics: Teleaction Objects 97

Figure 11. Different prefetching situations.

For different applications, different ICs from the hierarchy can be used.
XICI pre-fetches in sequence, XIC2 pre-fetches by user/system profiles,
XICS pre-fetches based upon the result of learning from users' past
behaviors, while XICT pre-fetches by special knowledge in catalog
searching.
Of course it is possible to have more levels of pre-fetching methods. For

example, the AMS can use a learning monitor to observe the Mosaic-IC
users' behavior. Then the AMS can develop a specialized IC at a new
intermediate level with a customized pre-fetching method. For instance,
XICS is for a particular user such as John who checks the technical reports
on multimedia database very often using Mosaic-Ie. Then John's normal
navigation in Mosaic-IC will use three levels of pre-fetching methods: XICl,
XIC2, and XICS, where XICS has the highest preference in 'multimedia'.
But when John steps into the catalog searching application, then the pre­
fetching methods may include four levels: XIC I, XIC2, XICS, and XICT.
Combined, the pre-fetching will prefer the current interests in catalog

www.manaraa.com

98 Chapter 6

searching, then in 'multimedia' information, and then according to
user/system profiles and finally the sequential accessing of all objects.
In implementation, the message M is sent to the hierarchical group of

ICs, not to an individual in the group. With a tag in the message M, the
message M is either a normal message or a broadcast message. For the
normal message M sent to the hierarchical group, the highest level will catch
this message first. If the highest level cannot handle this message, it is
passed to the next higher level until one IC catches it, and finally to the
lowest level Ie. For the broadcast message, it will be passed to the next level
IC whether the current IC catches it or not. But in both cases, the message
passing is in a sequential order, not in a non-deterministic order, as shown in
Figure 12. For example, a KILL message for the hierarchical group of pre­
fetching should be a broadcast message, while the PROFILE_CHANGED
message could be a normal message that is caught only by XIC2.

Figure 122. Message passing through a hierarchy of ICs.

7. DISCUSSION

A desired requirement for multimedia applications is that the user be able
to interact with multimedia objects that are aware of environmental changes
and moreover are able to dynamically incorporate unanticipated information
to better react to environmental changes.
In this chapter we have presented the Teleaction Object model for the

design of an Active Multimedia System. This model emphasizes a unified
approach for the modelling of multimedia applications, presentation and
communication, as a collection of interacting objects. Teleaction Objects are
formally specified as (G, K) pairs. With the types of node, media, and link in

www.manaraa.com

6. Semantics: Teleaction Objects 99

the hypergraph G, we can design algorithms for the efficient communication
and effective presentation of multimedia information. Using multiple levels
of knowledge realized by ICs, the user could customize the AMS and also
apply private knowledge to certain group of TAOs.
Our approach has the following advantages as compared to the traditional

AI approach: (1) The AMS system is not a rule-based system. It is based on
the IC technique that will dynamically modify itself to perform various
operations. (2) The TAO incorporates hypergraph structures that represent
domain knowledge not easily captured by expert system rules. (3) The IC
technique enables the system to localize a small set of rules in its operations.
The AMS system, therefore, is more efficient than a general purpose expert
system. ICs also share some characteristics of intelligent agents [ACM94],
but the fundamental difference is that an IC is a data structure to facilitate
information access and knowledge processing. We can use an IC to realize
B-trees and other conventional data structures efficiently. An Active Index
may have millions of ICs, whereas agent-based systems typically have at
most hundreds of agents.
A prototype Active Multimedia System CAMS) for Smart Multimedia

Mail application (SMM) has been implemented on SUN workstations.
Currently, our implementation effort for AMS is taking a direct approach. It
has been our concern for the standardization regarding the implementation of
AMS. As mentioned in Chapter 2, an ISO standard for programming
environments for the presentation of multimedia objects, called PREMO
[Herman94], has drawn a lot of attention. PREMO addresses the issues of
configuration, extension, and inter-operation of and between PREMO
implementations. From its conceptual framework, PREMO is based on an
object model in which object operations can be synchronous, asynchronous,
or sampled. Besides active objects, events are used as the basic building
block for its event model. Standards like PREMO will eventually provide a
standardized development environment for active multimedia systems such
asAMS.

www.manaraa.com

Chapter 7

Pragmatics: Tools for a Multimedia Development
Environment

In the preceding four chapters we described the syntax of
multidimensional languages to specify the presentation of multimedia
applications, and the semantics of the teleaction objects to specify the
activities performed by multimedia applications. In this chapter we give an
overview to a software engineering environment referred to as the
Multimedia IC Development Environment (MICE), and its associated tools.
The details of the MICE tools will be presented in Chapter 8.
MICE is to be used as the basis for the study of the visual design process

applied to the development of TAO-based multimedia applications. The
unifying model used in this approach is based on Teleaction Objects
(TAOs). TAOs are multimedia objects with attached knowledge structured
as an active index. TAOs can be described using the TAOML extension of
HTML. This allows for easy prototyping of distributed multimedia
applications using a web browser as the user interface. The TAOML Builder
tool allows the user to visually specify a TAO. The hypergraph is parsed for
correctness using an underlying Boundary Symbol Relation grammar and the
correct TAOML is output. TAOML can be translated into standard HTML
using the TAOML Interpreter. The ICs for the application can be visually
specified using the IC Builder. The ICCompiler produces the IC Manager
that provides the run-time environment for the ICs.

www.manaraa.com

102 Chapter 7

1. THE MICE ENVIRONMENT

Distributed multimedia applications have become increasingly common
in recent years due to the development of the World Wide Web.
Unfortunately, supporting tools and techniques for such applications are not
readily available. The goal of this research is to study the visual software
design process applied to multimedia applications by developing a visual
software engineering environment [Costa95a] for such applications. In
previous chapters, we have described the formal framework that can be used
as the basis for application development. Based on this approach, a set of
tools for the production of multimedia applications has been developed at the
University of Pittsburgh and the University of Salerno. These tools are based
on the Teleaction Object (TAO) paradigm. TAOs are multimedia objects
with attached knowledge in the form of a collection of index cells (lCs)
comprising an active index [Chang95a]. The set of tools comprising the
workbench is referred to as the Multimedia IC Development Environment
(MICE). In the MICE approach to TAO-based multimedia application
development, TAOs are described using TAOML, an extension of HTML.
This allows for easy prototyping of distributed multimedia applications using
a standard web browser as the user interface. The tools comprising MICE
are: TAOML Builder; TAOML Interpreter; IC Builder; IC Compiler and IC
Manager. The Interactions of these tools are shown in Figure 1.
The MICE approach is especially suited for quickly prototyping

complicated distributed multimedia applications, including those interacting
with database management systems. The use of a visual software
engineering environment helps to manage the structural complexity
[Karsa95] of such applications. Due to the fact that the approach uses a
standard web browser as the user interface, as well as the implementation of
the IC Manager in standard C language, the developed application may be
easily ported to the desired environment.
The rest of the chapter is structured as follows. Section 2 contains a brief

review of TAO-based multimedia application development. Sections 3
through 8 contain descriptions of each of the MICE tools.

www.manaraa.com

7. Pragmatics: Tools for a Multimedia Development Environment 103

..•~.•

Figure J. MICE Tools.

2. TAO-BASED MULTIMEDIA APPLICATIONS

Teleaction Objects (TAOs) are multimedia objects with an associated
hypergraph representing the structure of the multimedia object and a
knowledge structure. The knowledge structure allows the TAO to
automatically react to certain events [ChangH95b].
From a structural point of view, a TAO can be divided into two parts: a

hypergraph G and knowledge K.
The structure of the hypergraph G is a graph G(N,L), where N is a set of

nodes, and L is a set of links. There are two types of nodes: base nodes and
composite nodes. Each node represents a TAO, and each link represents a
relation among TAOs and there are the following link types: the attachment
link, the annotation link, the reference link, the location link, and the
synchronization link. Base nodes and composite nodes are called bundled
when they are grouped, thus defining them as a single entity. The nodes
which are interior to bundled nodes may not be included in annotation or
reference links unless the link is to the exterior bundled node, and there may

www.manaraa.com

104 Chapter 7

not be spatial/temporal relations between interior nodes and nodes external
to the bundled node.
The knowledge structure K of a TAO is classified in four levels: the

System Knowledge, the Environment Knowledge, the Template Knowledge,
and the Private Knowledge. The knowledge is structured as an active index
(IX), which is a set of index cells (Ie) from an index cell base (ICB). The
index cells define the reactions of the TAO to events filtered by the system.
An index cell accepts input messages, performs some action, and sends
output messages to a group of ICs. The messages sent will depend on the
state of the IC and on the input messages [Chang96a]. An IC may be seen as
a kind of finite-state machine [Chang95a].
An initial approach to the definition of a multimedia language for TAOs

has been given in [Chang96a]. The physical appearance of a TAO is
described by a multidimensional sentence. The language is generated by a
grammar whose alphabet contains generalized icons and operators.
Formally, a generalized icon is defined as x=(xm,xi) where xm is the
meaning of the icon and xi is the media object. Two functions,
materialization and dematerialization, are associated with every generalized
icon. The first function derives the object from its meaning: MAT(xm)=xi;
the second derives the meaning, or interpretation, from the object:
DMA(xi)=xm,
The generalized icons [Chang87b] are divided into the following

categories:
• Icon: (xm, xi)' where xi is an image
• Earcon : (xm, xe), where xe is a sound
• Ticon : (xm, xt), where xt is text (the ticon can also be seen as a subtype

of icon).
• Micon : (xm, xs), where Xs is a sequence of image icons (motion icon)
• Vicon : (xm, xv), where Xv is a video clip (video icon)
• Multicon : (xm, xc), where Xc is a multimedia sentence (composite

icon).
The generalized icons are represented by nodes in the hypergraph while

operators are represented by links.

2.1 TAOML

In order to more easily prototype a distributed multimedia application
based on the TAO concept, an extended version of HTML called TAOML
has been developed. TAOML can be regarded as a subclass of XML. With
TAOML, each component of the application can be realized as an ic
associated with a TAO-enhanced htrnl page. Given a TAO-enhanced htrnl
page, we can use an interpreter to read this page, abstract the necessary TAO

www.manaraa.com

7. Pragmatics: Tools for a Multimedia Development Environment 105

data structure and generate the normal html page for the browser. Therefore
no matter which browser is used, the application program can run if this
TAO_HTML interpreter is installed in advance. This can give some security
guarantees. The user can also choose a favorite browser. Furthermore if in
the future HTML is out of fashion, the user just needs to update the
interpreter and change it into another language. The other parts of
application will not be affected. In this section, we describe the TAO
enhanced html named TAOML.
In order to use TAO_HTML, or TAOML, to define a TAO, the data

structure of a TAO is extended. A TAO has the following attributes:
tao_name, tao_type, p_part, links, ics and sensitivity.
• 'tao_name' is the name of the TAO, which is a unique identifier of

each TAO.
• 'tao_type' is the media type of TAO, such as image, text, audio, motion

graphs, video or mixed.
• 'p_part' is the physical part of TAO. To implement it in the context of

TAO_HTML, 'p_part' here can be denoted by a template that indicates how
an HTML page looks.
• 'links' is the link to another TAO.
• 'ie' is the associated index cell.
• 'sensitivity' indicates whether this object is location-sensitive, time­

sensitive, content-sensitive or none-sensitive. Then the same object can have
different appearance or different functionality according to the sensitivity.
The detailed meaning of sensitivity should be defined by user according to
the requirement of applications.
• 'database' specifies the database that this TAO can access and/or

manipulate.

The formal definition of TAO_HTML language can be described in BNF
form:

TAO_HTML ::= <TAO> TAO_BODY <{fAO>

TAO_BODY ::= NAME_PART TYPE]ART P_PART LINK_PART
IC]ART SENSI]ART DATA]ART

NAME]ART ::= <TAO_NAME> "name" <ffAO_NAME>

TYPE_SET ::= [image, text, audio, motion~raph, video, mixed]

www.manaraa.com

106 Chapter 7

P_PART ::= <TAO_TEMPLATE> "template_name" </TAO_TEMPLATE>

LINK_PART ::= empty I<TAO_LINKS> LINK_BODY <{fAO_LINKS>
LINK]ART

LINK_BODY ::= name = "link_name", type = LINK_TYPE, obj = "link_obj"

LINK_TYPE ::= [spatial, temporal, structural]

IC_PART ::= empty I<TAO_IC> flag=FLAG ic_type="a_string"
icid_Iist="a_string" cgi_pgm="a_string" message_type="a_string"
content="a_string" </TAO_IC>

FLAG ::= [old, new]

SENSCPART ::= empty I<TAO_SENSI> SENSITIVITY <{fAO_SENSI>

SENSITIVITY ::= [location, content, time]

DATA]ART ::= empty I<TAO_DATA> "database_name" <{fAO_DATA>

In the template of a TAO, in addition to the normal HTML tags and
definitions, there is a special TAO tag for link relation with other TAOs. It is
defined as:

3. TAOML BUILDER

The TAOML Builder is a visual tool for MICE application developers. It
allows users to specify the structure of a TAO in the form of a hypergraph
representing the multimedia objects and the relations between these objects.
Once the user has decided on the objects to be contained in a TAO and the
relations to hold between the objects, the tool will automatically generate the
TAOML corresponding to the visually specified TAO. This output is then
used by the TAOML Interpreter tool described in Section 4. The TAOML
Builder is based on an underlying multidimensional grammar (Symbol
Relation grammar [Ferru96]) describing valid TAO structures [Amdt97a).
The TAOML Builder allows the creation of the nodes and links of the

hypergraph of a TAO. The properties of each node of the TAO are collected
in the dialog tab "Obj Info" as shown in Figure 2a. The dialog tab "Obj

www.manaraa.com

7. Pragmatics: Tools for a Multimedia Development Environment 107

Preview" gives a preview of the selected node together with some
information about the file attached to the node (see Figure 2b and Figure 2c).
If the node is a micon the component nodes of the structured icon will be
listed.

a

c

Figure 2. Tabbed Dialog Showing Node Properties.

The dialog tab "Preferences" allows the insertion of preferences that will
influence the final presentation (Figure 2d). Information about the IC cells
connected to the selected node can be inserted in the dialog tab "IC Data". A
property dialog box is also provided for the links.
The tool bar of the TAOML Builder is split into four parts (Figure 3): the

main tool bar which contains commands for printing, cutting, copying, etc.;
the tool bar of the nodes which allows the addition as well as the removal of
the nodes for the construction of the hypergraph of the TAO; the tool bar of
the links which allows the addition and the removal of the links of the
hypergraph. The magnifying glass allows zoom in and zoom out of the
screen in order to have a complete view in one page of the hypergraph.

www.manaraa.com

108

Figure 3. TAOML Builder Toolbars.

Chapter 7

Figure 4. Figure 4 - Hypergraph and Matching TAOML.

The TAOML Builder has been tested on a selected sample of users that
have shown the need to overcome some of the problems of using the
graphical representation. The non-experienced users preferred to use the
graphical representation of the hypergraph, experienced users preferred a
textual representation. By selecting the command "Create TAOML" in the
menu "Tools" TAOML Builder automatically generates the TAOML version

www.manaraa.com

7. Pragmatics: Tools for a Multimedia Development Environment 109

of the hypergraph (Figure 4). This textual representation can then be edited
from within the TAOML Builder. The user, therefore, can switch between
textual and graphical editing of the hypergraph.

4. TAOML INTERPRETER

The TAOML Interpreter is a command line tool that interprets the
TAOML output by the TAOML builder tool and generates valid HTML. The
interpreter uses templates that are independent HTML pages to define the
fundamental display element and location arrangement. For example, if the
TAO is of image type, the template will just contain an HTML statement to
introduce an image. If the TAO is of mixed type, the template will define
some common parts and leave some space to insert the elements that are
specific to this TAO.
The interpreter must also evaluate the link tag of TAOML. A link has

attributes 'link_type', 'Iink_obj'. 'link_type' is either relational (spatial or
temporal) or structural (COMPOSED OF). In the context of TAOML, a
spatial link describes visible relationship between sub_objects inside one
mixed object. For example, a mixed tao I contains an image TA02 and a text
TA03, then TAOI has spatial link with both TA02 and TA03. A temporal
link usually refers to an invisible object that is not a display element, but its
activation time is influenced by the other. A structural link relates one TAO
with another dynamically via user input or external input. For example, the
user clicks a button in TAOI will invoke another page TA02, and then there
is a structural link from TAOI to TA02.
For the associated index cell, the flag is "old" if the ic already exists, or

"new" if the ic is to be created. The ic type, ic_id list, message type and
message content can either be specified, or input by the user (indicated by a
question mark in the input string). A corresponding HTML input form will
be created so that the user can send the specified message to the ic's.
The TAO_HTML Interpreter can be presented in the following pseudo­

code:

procedure interpreter(char *TAOnarne)
{

open TAO definition file
call TAO-parser() to construct the

TAO data structure TAO_struct
call ternplate-parser(TAO_struct)
to output HTML file

}

procedure TAO-parser(file_handle, link_type)
{

www.manaraa.com

110

while (not end of file)
{

read one line from the file
distinguish tag and get information
and store in data structure

Chapter 7

}

procedure template-parser(TAO_structure)
{

if IC_PART is specified, output HTML statements
to create a form to accept user's input and
send message to the ic's through IC_Manager

if template file exists
open template file

while (not end of file)
{

read one line from the file
if (not <TAO_rel> tag)
output html text
else
{

get link_name from the <TAO_rel> tag
search in the TAO_structure with link_name
if (a link structure is found with the
same link_name)
{

get link_type and link_TAO_name
switch (link_type)
case structural:
insert <a href .. > link in template
to link with link_TAO_name

case spatial:
call procedure interpreter (link_TAO_name)
to insert template of link_TAO_name

}
}

5. Ie BUILDER

The knowledge of a TAO-based mutimedia application is stored in a set
of active index cells. The index cells can be created either before or after the
TAOML has been created using the two TAOML tools. The IC Builder is a
visual PC-based tool to help the user define active index cells. Once an index
cell is defined, the IC Builder creates a formal specification file *.in (e.g.
ic l.in). After all the index cells have been defined, the IC Builder generates

www.manaraa.com

7. Pragmatics: Tools for a Multimedia Development Environment 111

a file ic.dat to characterize an application. This file ic.dat becomes the input
to the next tool, the IC Compiler. The index cells specification files *.in, on
the other hand, become the input to the customized IC Manager.
The main screen of the IC Builder is shown in Figure 6 of Chapter 8. As

was said in Section 2, an IC may be seen as a kind of Finite State Machine.
The IC Builder allows us to graphically specify the states and transitions of
such a machine. Specifically, the IC Builder allows us to draw a state by
clicking the corresponding icon in the tool bar, pointing the cursor at the
desired position, and pressing the left button. The state will be numbered
automatically. We may also delete a state or change the ID number of a
state. We may draw or delete a transition between states and define a
transition using the dialog shown in Figure 7 of Chapter 8. Clicking the
Define_Transition icon in the tool bar, the user moves the cursor to the start
position of one transition, then clicks the left button. A dialog appears on the
screen. This dialog allows one to add as many transitions between two states
as desired. Clicking the two buttons on the right side of the dialog allows the
user to further define the input or output message of one transition between
the two states. Figure 9 of Chapter 8 shows the dialog for defining an output
message. We see that there are two columns in this dialog, the left one is
used to define the action for the transition. Two fields are needed for each
action, the action name (case insensitive) and the name of the file that
contains the action. The right column defines the output messages in the
transition. There are six options for the field "Output IC NO.".
"Specify an Existing IC ill". For this option, the user has to specify a

positive integer as the IC ill.
"Send to a New IC". For this option, the corresponding output message

will be post to an IC that will be activated when this message comes.
"Broadcast to Allies". For this option, this message will be broadcast to

all ICs. If the IC type in the field "IC type" is specified, the message will be
broadcast to all ICs of the specified type. If not, the message will broadcast
to all ICs that can receive the message.
"Contended by All Ics". For this option, this message will be contended

by all ICs. If the IC type in the field "IC type" is specified, the message will
be contended by all ICs of the specified type. If not, the message will be
contended by all ICs which can receive the message.
"Broadcast to Selected Ics". For this option, this message will be

broadcast to the selected ICs. The user has to program a function to compute
the selected ICs. If the function needs to know the IC type, the user has to
the IC type in the field "IC type".
"Contended by Selected les". For this option, this message will be

contended by the selected ICs. The user has to supply a function to compute
the selected ICs.

www.manaraa.com

112 Chapter 7

The IC diagrams definition need to be transformed to a so-called .in file
when it is used as the input of the IC_Manager. Clicking the Export icon in
the tool bar exports the diagram as a .in file. The export operation will create
all the .in files in the project plus an ic.dat file for the input of the IC
Compiler.

6. IC COMPILER

The IC Compiler is a command line tool that accepts an input file
characterizing an application and generates the customized source code of
the IC Manager. The default input file is ic.dat produced by the IC Builder
tool. This file consists of a number of definitions with optional comments.
Each definition type header is prefixed with a "$".
The supported definition types are the following. Header "$MESSAGE"

defines input and output messages of an IC as: message_name/message_id.
Header "$INCLUDE_FILE" allows the user to add include files to the
application by giving the file name. Header
"$ACTION/AUTO_GEN:YESINO" defines actions of an IC as:
action_name/action_id[/function_name[/file_name]]. If AUTO_GEN is
YES, a source code file for actions is automatically generated by gathering
the functions in the given files. Otherwise, the user must supply the file.
Header "$IC_ID" defines IC_IDs as: name_oCic_idlnumber. Header
"$MUST_FUNC/ AUTO_GEN:YESINO" defines functions that are
necessary in IC Manager as: func~roup_name[lfile_name]. Once again
AUTO_GEN equal to YES will automatically create the needed file from a
given list of files containing functions. The functions are obtained by
specializing system-provided templates. Header "$THRESHOLD" defines
thresholds for fuzzy computation as: ic_type/fuzzy_number. Header
"$DB_ACCESS" defines the access to a database as:
view_name/database/tables /attributes/condition where

tables = table [,table]*
attributes = attribute [,attribute]*
condition is a predicate.
If database is "DEFAULT", it means to access the default database that is

defined in the program. If attributes is "*", it means all attributes of the
specified tables. If condition is "NULL", it means that the generated SQL
has no condition. The definition will cause an SQL command for the
specified database of the following type to be created:
SELECT attributes FROM tables WHERE condition
After execution of the IC Compiler, the active index structure of the

MICE application is ready to be exercised by the IC Manager tool.

www.manaraa.com

7. Pragmatics: Tools for a Multimedia Development Environment 113

7. Ie MANAGER

The IC Manager is a run-time tool that receives incoming messages,
activates index cells. performs actions, and handles outgoing messages. Each
message sent from one IC to another passes through the IC Manager.
Another implementation would have each IC as a separate process. however
this would result in high interprocess communication overhead. In order to
avoid this overhead in the prototyped application, the MICE approach avoids
these separate processes.
The IC Manager contains both domain-independent and domain-specific

parts. The domain-specific part contains the user-defined procedures used to
perform predefined actions. The domain-specific part also controls the
external messages sent to the IC Manager. The separation between domain­
independent and domain-specific parts makes implementation of a
multimedia application containing powerful actives indexes easy since only
the domain-specific parts need be given.
Since the IC Manager is written in standard C language, the MICE

workbench can be used to develop applications intended for deployment on
both PC and UNIX based web servers. The IC Manager has been used to
prototype a Smart Image System. Web Browser Monitor [Chang96c], B-Tree.
and Medical Personal Digital Assistant [Chang96b].

8. TAOML TO XML TRANSLATOR

TAOML can be described as a subset of XML [W3C98], the Extensible
Markup Language. Like HTML. XML is based on the Standard Generalized
Markup Language (SGML) [IS092]. But while HTML is a non-extensible
grammar. XML is designed to be extensible. while at the same time avoiding
some of the complexity of SGML. Microsoft's proposed Channel Definition
Format for push technologies is an example of an XML application. Using
XML rather than HTML would essentially allow us to avoid the TAOML
interpreter. Also. the flexibility of XML links (including the possibility of
embedding one document inside of another and bidirectional links)
corresponds much more closely to the hypergraph model of TAO.
The major differences between HTML and XML are as follows:

• Hierarchical element structure: XML documents must have a strictly
hierarchical tag structure. Start tags must have corresponding end tags. In
XML vocabulary, a pair of start and end tags is called an element.

www.manaraa.com

114 Chapter 7

• The empty tag requires trailing slash: Empty tags are also allowed as
elements in XML documents. An empty tag is essentially a start and end tag
in one, and is identified by a trailing slash after the tag name.

• Single root element: XML documents allow only one root document. This
restriction makes it easier to verify that the document is complete.

• Quoted attribute values: All attribute values must be within single or double
quotes.

• Case sensitivity: XML tags are case-sensitive.
• Relevant white space: White space in the data between tags is relevant,
because XML is a data format.

• Extensibility: XML can be extended by creating new tags that make sense.

The Advantages of using XML are:

• Authors and providers can design their own document types using XML,
instead of being stuck with HTML.

• Information content can be richer and easier to use, because the hypertext
linking abilities of XML are much greater than those of HTML.

• XML can provide more and better facilities for browser presentation and
performance.

• XML removes many of the underlying complexities of SGML in favor of a
more flexible model, so writing programs to handle XML will be much
easier than doing the same for full SGML.

• Information will be more accessible and reusable, because the more flexible
markup of XML can be used by any XML software instead of being
restricted to specific manufacturers as has become the case of HTML.

• Valid XML files can be used outside the Web as well, in an SGML
environment.

The TAOML-to-XML Translator works in the following way:

procedure TAOML-to-XML translator
begin
open TAOML page
while (not end of file) do
begin

read one line from the input file
recognize tag
convert into appropriate XML tag
write into output file

end
end

www.manaraa.com

7. Pragmatics: Tools for a Multimedia Development Environment 115

To implement the TAOML-to-XML Translator, we need a DTD
(Document Type Declaration), which is a grammar that describes what tags
and attributes are valid in an XML document, and in what context they are
valid. DTD specifies which tags are allowed within certain other tags, and
which tags and attributes are optional. With regard to a DTD, an XML
document can: 1) refer to a DTD using a URI, or 2) include a DTD inline as
part of the XML document, or 3) omit a DTD altogether.
The DTD for TAOML is as follows:

<!ELEMENT TAO (TAO_NAME, TAO_TYPE, TAO_TEMPLATE,
(TAO_LINKS)*, (TAO_IC)?, (TAO_SENSI)?, (TAO_DATA)?»

<!ELEMENT TAO_NAME (#PCDATA»
<!ELEMENT TAO_TYPE (#PCDATA»
<!ELEMENT TAO_TEMPLATE (#PCDATA»
<!ELEMENT TAO_LINKS EMPTY>
<!ATTLIST TAO_LINKS

name CDATA
type CDATA
obj CDATA

>
<!ELEMENT TAO_IC EMPTY>
<!ATTLISTTAO_IC

flag (oldlnew)
ic_type CDATA
ic_id_list CDATA
message_type CDATA
content CDATA
cgi CDATA

>
<!ELEMENT TAO_SENSI (#PCDATA»
<!ELEMENT TAO_DATA (#PCDATA»

The TAOML-to-XML Translator is implemented in PERL. As an
example, the following TAOML is the input:

<TAO>
<TAO_NAME> "activatel" <!TAO_NAME>
<TAO_TYPE> mixed <!TAO_TYPE>
<TAO_TEMPLATE> "activatel.tpl" <!TAO_TEMPLATE>
<TAO_IC>
flag =new
ic_type ="PR"

www.manaraa.com

116

ic_id_list =
message_type = "MO"
content =
cgi = "corba.cgi"
<{fAO_IC>
<{fAO>

The output XML is as follows:

Chapter 7

<?xml version = "1.0" ?>
<!DOCTYPE TAO SYSTEM "mse.dtd">
<TAO>
<TAO_NAME> "activatel" <{fAO_NAME>
<TAO_TYPE> mixed <{fAO_TYPE>
<TAO_TEMPLATE> "activatel.tpl" <{fAO_TEMPLATE>
<TAO_IC flag =" new" ic_type = "PR" ic_id_list = "" message_type = "MO"
content = "" cgi="corba.cgi" >
<{fAO_IC>
<{fAO>

9. DISCUSSION

A visual software engineering environment for multimedia applications
has been developed in order to study the visual software development
process. Prototype systems have been developed using the MICE tools.
Preliminary studies have shown that while novice users especially appreciate
the visual environment, expert users prefer to have the option to work
visually as well as textually within the same tool. The MICE approach
allows for powerful applications to be quickly prototyped.
In the future, the tools will be more closely integrated resulting in a

seamless MICE developer's environment. This environment should provide
a closer linkage between the design of the ICs and the design of the TAOML
as well as automate the transfer of the output of the TAOML Builder and IC
Builder tools to the Web Server where the IC Compiler and TAOML
Interpreter are hosted. In addition, since the TAOML Builder is based on an
underlying Symbol Relation Grammar, a syntax-directed version of the tool
will be built.

www.manaraa.com

Chapter 8

Pragmatics: Prototyping Multimedia Applications

MICE is a multimedia development environment for the rapid
prototyping of multimedia applications. The traditional "waterfall" software
life cycle model is depicted in Figure I.

CASE Tool
Support

.-----------•••••I••••

Figure J. Traditional "waterfall" software life cycle model

This traditional software life cycle is appropriate for traditional
application software development. Multimedia applications, on the other

www.manaraa.com

118 Chapter 8

hand, place strong emphasis on evolutionary content development. The rapid
prototyping model is depicted in Figure 2.

Develop Preliminary'
Requirements

Develop
Prototype

Specify
Requirements

Figure 2, Rapid prototyping model for software development.

MICE is an application software development environment supporting
rapid prototyping. In this chapter the details ofMICE will be explained.

1. HOW TO BUILD A MICE APPLICATION

MICE provides a logical way in building a multimedia application on a
workstation or a PC. From the web site www.cs.pitt.edu/-chang.by
following the links to multimedia software engineering courseware, you will
be led to the following directories that contain the essential components of
MICE:
• IC_Builder! the files you need to run the IC_Builder on PC

• IC_Compiler! the files to run the IC_Compiler

• IC_Manager! the files needed to compile the IC_Manager

• IC_TaomV the interpretor to translate ,taoml pages to ,html pages

The seven steps to build a MICE application in a project directory such
as IC_Work/ are described below:
Step 1. Download the IC_Builder to your PC, unzip and install it under

Windows. Use IC_Builder (see Section 2) to draw each index cell and create
the .in file for each ic. Use capital letters for the *.in files such as XIC.in,
DIC.in, etc. The IC_Builder will also create the ic.dat file. You can also
create *.in and ic.dat manually without using IC_Builder.
Step 2. Provide one action file for each action defined in the ic's. An

action file contains the corresponding C function for each action and should
be copied to the IC_Work/source/ directory.
Step 3. Copy *.in files to IC_Work/ directory and ic.dat file to

IC_Work/source/ directory. Copy all files from IC_Compiler, IC_Manager
and IC_Taoml to IC_Work/source/ directory. If necessary, modify the iC.dat
file. Use IC_Compiler icc to generate the source files. There are six files
generated by IC_Compiler:

actions.c ic_func2.c ic3unc3.c app.h fuzzy.h db_def.h

www.manaraa.com

8. Pragmatics: Prototyping Multimedia Applications 119

Step 4. Use command "make -f makefile.maincgi" to make main.cgi that
is the cgi program that your application will need. Therefore, you may call it
main.cgi. The IC_Manager becomes part of main.cgi so any message to an ic
will be sent to this main.cgi.
Step 5. Use command "make -f makefile.intercgi" to make inter.cgi that

is the cgi program to access a taoml page. main.cgi and inter.cgi should be
copied to application directory IC_Work! so that the home page can use
inter.cgi to access a taoml page such as tao_l.taoml. The link has the
following form: .
Step 6. Design the home page index.html for the application and put it in

directory IC_Work!. This home page should have a cgi link to a taoml page
such as tao_1.taoml. tao_1.taoml and its associated template page tao_1.tpl
should be in the sub-directory IC_Work!TAOMLI. Indeed, all taoml pages
and tpl pages should be in the sub-directory IC_Work!TAOMLI. To create
the taoml pages, you will use an extended html syntax to specify the TAOs
and how they are structured and activate ic using the cgi program, which is
main.cgi. If you want to refer to your own cgi programs, they can be
mentioned in the tpl pages. To sum up, there are three types of pages:
• html page index.html uses cgi program inter.cgi to link to tao_l.taoml
• taoml page tao_Ltaoml uses cgi program main.cgi to activate an ic tao_l
• tpl page tao_l.tpl uses customized cgi program to do special tasks
Step 7. Now you are ready to run your application. Use a browser to

enter application's home page IC_Work!index.html.
Notes:
• For detailed step-by-step instructions, see Section 6, MICE Application
Development Steps.

• Program compilation must be done on the same type of computer
system as the server.

• In IC_Compiler directory, the action template is action.tpl and the
customized action functions are a1.c, a2.c, ... , etc. which correspond
to the actions aI, a2, ... , etc.

2. Ie BUILDER

The IC Builder is a PC-based tool to help the user define active index
cells. Once an ic is defined, the IC Builder creates a formal specification file
*.in such as icl.in. After all the ie's have been defined, the IC Builder
generates a file ic.dat to characterize an application. This file ic.dat becomes
the input to the next tool, the IC Compiler.
The ic specification files *.in, on the other hand, become the input to the

customized IC Manager.

www.manaraa.com

120 Chapter 8

The Symbolic IC_Builder Version 2.0 has the following features:
• There is no need to specify the message ID and action ID any more, i.e.
messages and actions are directly represented by symbolic names.

• The ic.dat file will be automatically generated.
• Simple project management for all the ICs in the project.

The following steps will create the ICs and .in and ic.dat files:
Step 1. Create a project directory, which will contain all the project files

later, such as c:\icb\hw4\
Step 2. In the IC Builder menu bar, find the 'simulation' menu. Select the

'options' menu item. This will bring up a dialog asking you to specify the
executable application file (the customized IC Manager) and the message
input file. For example, if your customized IC Manager is an executable file
called wag.exe, then you first enter:
c:\icb\hw4\wag.exe

and then you enter:
c:\icb\hw4\mag.in

which means the message input file is msg.in. These two inputs are served as
the simulation purpose in IC_Builder. But they are also used to determine
the project directory, which will be subtracted from the executable file path.
This means all the files generated by IC_Builder will be put in this directory.
Step 3. Also in the 'simulation' menu, select the 'project' item to define

the project files in the project. You could add or remove the files from the
project. Please use the name of IC file, don't use the .in name. For example,
if your project contains three ics: WAG, BBC, LBC, then the project files
could be:

WAG.gra BBC.gra, LBC.gra
Step 4. Use the IC_Builder to create ICs. The input message and output

message specification dialogs are explained later in this section.
Step 5. After you have created all the ICs, click the 'export' button to

export the .in files and ic.dat. IC_Builder will create .in file for each IC, the
name of .in file is same as its graphic file.
The key features of the IC_Builder are described below:

2.1. Define a Project
2.1.1 Create a Project Directory as Your Work Space: Create a directory

in the disk, which will contain all the project files later. For example,
c:\icb\hw4\.

2.1.2 Specify Project Files: In the IC Builder menu bar, find the
'simulation' menu. Select the 'options' menu item. This will bring up a dialog
which ask you to specify the executable file for the customized IC Manager
of the application and the external input message file if necessary. Please be

www.manaraa.com

8. Pragmatics: Prototyping Multimedia Applications 121

sure to specify the complete path of the project directory so that any file
generated by IC_Builder will be put in this directory.

Figure 3. How to specify project files.

For example, if your customized IC Manager is an executable file called
wag.exe, then at the first line input the following:

c:\icb\hw4\wag.exe
and the second line can be something like:

c:\icb\hw4\mag.in
which means the external input message file is msg.in.

• Simulation Environment ~[iIE$

Ie Manager: Ic:\icb\hw4\icm.Pif

Message File: Ic:\icb\hw4\msg.in

Figure 4. How to specify Ie Manager and message file.

2.1.3 Specify IC Types used in the Project: Also in the 'simulation' menu,
select the 'project' item to define the project files in the project. You could
add or remove the files from the project. Please use the name of IC file, don't
use the .in name. For example, if your project contains three ics: WAG,
BBC, LBC then the project files could be: WAG.gra BBC.gra, LBC.gra.

www.manaraa.com

122 Chapter 8

Project Files:

wag.gra
bbc.gra
Ibc.gra

New File: 1'-- _

Figure 5. The project files.

Draw a State!! S' ul
! i 1m ate .

D T i .. : L' Zoomm Z Otraw a ra~i~n me (-..... oom u
. fJ f "- 1 I

Draw Trarul'ttton with turning points

Change the ID of State

iew all input messages defined in this Ie
~

View all output messages defined in this Ie

View all acliorul defined in this Ie

Figure 6. The Ie Builder's tool bar.

:;;..
..J

:x::••

H
:x::"
!!j::

www.manaraa.com

8. Pragmatics: Prototyping Multimedia Applications 123

2.2. Define IC Types
2.2.1 Draw a State: Click (press left mouse button) the icon in the tool

bar, then point the cursor at the desired position, press left button. The state
will be numbered automatically.
2.2.2 Delete a State: Click (press left mouse button) the Delete_State icon

in the tool bar, then move the cursor within the state which you want to
delete, press left button.
2.2.3 Move a State: Currently, there is no way to move a state to a

different position, you have to delete and draw a new one to achieve the
reposition of the state.
2.2.4 Change the ID number of the State: Click (press left mouse button)

the Change_ID icon in the tool bar, then click on the state you want to
change. A dialog will appear to let you enter the new number of the state.

~ ~

efine Output
Message(g flUlCtion)

Figure 7. How to define a transition.

2.2.5 Draw a Transition: There are two ways to draw a transition between
states. One way is to draw a straight line, the other is to draw a line with
turning points. Either way you should first click the icon, then move the
cursor to the transition start position on one state, then click. Then you can
move the cursor to the next position, click, and so on (if you are not using
the draw straight line icon). Finally you double click the left button to select
the end position of the transition. Be aware that the start and end positions
should always be on the edge of the state. The start position is marked as a
small green rectangle, and the end position is marked as a red rectangle.

www.manaraa.com

124 Chapter 8

2.2.6 Delete a Transition: Select the Delete_Transition icon in the tool
bar, move the cursor to the start position of the transition, then click the left
button.
2.2.7 Define a Transition: Click the Define_Transition icon in the tool

bar, then move the cursor to the start position of one transition, click the left
button. A dialog like above will appear on the screen. This dialog lets you to
add as many transitions between two same states as you want. Click the two
buttons on the right of the dialog to further define the input or output
message of one transition between the two states.

Figure 8. How to define the input message.

2.2.7.1 Input Message Specification Dialog: As you click the Define
Input Message button, the Input Message Specification dialog will prompt,
as the figure below. There are two columns in the dialog, the left one is used
to specify input message's name, parameters. The right column is used to
define the predicate for input messages. You can add or delete the input
message and predicate. The format of the input field "Parameters" will be
explained later in Section 2.3. Notice the message name is case insensitive.

www.manaraa.com

8. Pragmatics: Prototyping Multimedia Applications 125

Figure 9. Output message specification.

2.2.7.2 Output Message Specification: There are two columns in this
dialog, the left one is used to define the action for the transition. Two fields
are needed for each action, the action name (case insensitive) and the name
of the file that contains the action. The right column defines the output
messages in the transition. The format of the input field "Parameters" in the
action and output message will be explained later in Section 2.3. There are
six options for the field "Output IC NO.":
• Specify an Existing IC ID: For this option, the user has to specify a
positive integer as the IC ID.

• Send to a New IC: For this option, the corresponding output message
will be post to an IC which will be activated when this message
comes. Please notice you must specify the IC type in the field "IC
type".

• Broadcast to All ICs: For this option, this message will be broadcast to
all ICs. If the IC type in the field "IC type" is specified, the message
will be broadcast to all ICs of the specified type. If not, the message
will broadcast to all ICs that can receive the message.

• Contended by All ICs: For this option, this message will be contended
by all ICs. If the IC type in the field "IC type" is specified, the
message will be contended by all ICs of the specified type. If not, the
message will be contended by all ICs which can receive the message.

• Broadcast to Selected ICs: For this option, this message will be
broadcast to the selected ICs. The user has to program a function to
compute the selected ICs. If the function needs to know the IC type,
the user has to the IC type in the field "IC type".

• Contended by Selected ICs: For this option, this message will be
contended by the selected ICs. The user has to program a function to

www.manaraa.com

126 Chapter 8

compute the selected ICs. If the function needs to know the IC type,
the user has to the IC type in the field "IC type".

2.2.8 Export the IC diagram: The IC diagrams definition need to be
transformed to so called .in file when it is used as the input of the
IC_Manager. Click the Export icon in the tool bar to export the diagram as a
.in file. The export operation will create all the .in files in the project plus an
ic.dat file for the input of IC compiler.

2.3. The format of the parameter in the Message Definition Dialog is
given below in BNF syntax:
<para_list> ::= <para_list>'I'<item>
<para_list> ::= <item>
<item> ::= <const> I<var> I<func>
<const> ::= I<integer> IF<float> IS<string>
<var> ::= X<digit> IY<digit> IZ<digit>
<func> ::= G<digit>'('<func_para_list>')' IH<digit>'('<func_para_list>')'
<func_para_list> ::= <Cpara_list> INULL
<Cpara_list> ::= <Cpara_list>','<item>
<f_para_list> ::= <item>
<digit> ::= '0'..'9'
For example, XlIYlIG7(X2, Y2) in the field parameters means that Xl

and Y1 are variable parameters and G7 is a function parameter which has
two variable parameters X2 and Y2. I25lFl.2lSfire means that there are three
constant parameters: an integer 25, a floating point 1.2 and a string "fire".

2.4. A sample .in file is given below:

o II current state
o II next state
1 II 1 input message(s)
1O:0,YIIYO II message starcprefetch with 2 parameters
o II no. predicate
o 110 output ic(s)
o 110 output message(s)
3 113 action(s)
II II action "issue_proc"
12 II action "seCpid"
14,YIIShelpIHO(YO) II action "compute_schedule" with 3 parameters
o II current state
o II next state
I II I input message(s)

www.manaraa.com

8. Pragmatics: Prototyping Multimedia Applications

11:0 II message "end_prefetch"
o II no. predicate
o 110 output ic(s)
o 110 output message(s)
1 II 1 action(s)
15 II action "seCpid_null"
o II current state
-1 II next state
1 II 1 input message(s)
12:0 II message "kilCprefetch"
o II no. predicate
o 110 output ic(s)
o 110 output message(s)
1 II 1 action(s)
13 II action "kill_proc"

3. IC COMPILER

127

The IC Compiler accepts an input file that characterizes an application
and generates the customized source code of the IC Manager. The default
input file is ic.dat produced by the IC Builder. The IC Compiler icc can be
recompiled using the make file "makefile.icc".

Usage: icc [-d] inputJile

The flag -d generate source codes with embedded debugging messages
Input of icc: The inputjile specifies the characteristics of the application.

The default inputjile is ic.dat.
Output of icc: app.h, fuzzy.h, db_def.h, actions.c, ic_func2.c, and

ic_func3.c.
Format of the inpucfile: Each definition type header must be prefixed by

"$". All definition lines follow their definition type header without prefixed
by any special character. A definition type must end with "%". A comment
line must begin with "II". A space line is allowed.

The IC Compiler supports the following definition types:
(1) Header "$MESSAGE" defines input and output messages of IC with

definition format:
message_name/message_id

www.manaraa.com

128 Chapter 8

This definition type is to generate message definitions in "app.h",
message array msg[] in "fuzzy.h", and function decode_msgO in
"ic_func3.c".
(2) Header "$INCLUDE_FILE" allows the user to adds including files to

app.h with definition format:
file_name

(3) Header "$ACTION/AUTO_GEN:YESINO" defines actions of IC
with definition format:

action_name/action_id[lfunction_name[lfile_name]]
This definition type is to generate action definitions in "app.h", function

do_actionsO and all action functions in "actions.c". If "actions.c" exists, the
old "actions.c" will be moved to a backup file "actions.b*", for example,
actions.bO, actions.bl.. ..
If AUTO_GEN equals YES, actions.c will be automatically generated by

collecting specified file_names; otherwise, all the file_names will be ignored
and the user has to provide an actions.c by himself.

If AUTO_GEN equals YES but the file_name is not specified, a default
template of the corresponding function will be inserted into the actions.c
instead.
(4) Header "$IC_ID" defines IC_IDs with definition format:

name_oCic_idlnumber
This definition type is to generate ic_id definitions in "app.h" and

function decode_icO in "ic_func3.c".
Note: ic_id EXTERNAL has been defined as -1 in "ic.h".
(5) Header "$MUST_FUNCIAUTO_GEN:YESINO" defines functions

that are necessary in IC Manager with definition format:
func~oup_name[lfile_name]

This definition type is to generate all functions of file "ic_func2.c". If
"icjunc2.c" exists, the old "ic_func2.c" will be moved to a backup file
"ic_func2.b*", for example, icjunc2.bO, ic_func2.bl.. ..
If AUTO_GEN equals YES, icjunc2.c will be automatically generated

by collecting all functions in specified file_names; otherwise, all the
file_names will be ignored and the user has to provide an icjunc2.c by
himself. If AUTO_GEN equals YES but file_name is not specified, a
default template of the corresponding functions will be inserted into
icjunc2.c in stead.
(6) *.tpl are the templates for $MUST_FUNC. The templates:

out_msg.tpl, predicattpl, inter_mm.tpl, and func_var.tpl are default
templates for functional groups FILL_OUTPUT_MSG_GROUP,
PREDICATE_GROUP, INTERNAL_MM_GROUP, and
USER_DEFINE_FUNC_VAR_GROUP, respectively. The customized

www.manaraa.com

8. Pragmatics: Prototyping Multimedia Applications 129

functions should be called ouCmsg.c, predicat.c, inter_mm.c, and
func_var.c.
A default template for each group contains:

FILL_OUTPUT_MSG_GROUP: fill_contentO, filUtypeO
PREDICATE_GROUP: pred_matchO
INTERNAL_MM_GROUP: dump_internaLmmO, inicmmO,

save_mmO, restore_mmO
USER_DEFINE]UNC_VAR_GROUP: userdeCfO, userdeCvO
FILL_OUTPUT_IC_GROUP: find_icO

It is recommended to copy and modify the default template functions for
each function group.
(7) action.tpl is the template for user-supplied action functions, one for

each action. The customized actions are stored in separate files such as al.c,
..., as.c.
(8) Header "$THRESHOLD" defines thresholds for fuzzy computation

with definition format:
ic_type/fuzzy_number

Two arrays ic_type and threshold will be generated in "fuzzy.h".
Note: Definition type "$THRESHOLD" is necessary for fuzzy Ie.
(9) Header "DB_ACCESS" defined the access of database with definition

format:
view_name/database/tables/attributes/condition

where tables = table [,table]*
attributes =attribute [,attribute]*
condition is a predicate.

If database is "DEFAULT", it means to access the default database that is
defined in the program. If attributes is "*", it is all attributes of the specified
tables. If condition is "NULL", it means that the generated SQL has no
condition. The definition will create a SQL command for the specified
database:

SELECT attributes
FROM tables
WHEN condition

File db_def.h will be generated.
(10) Use makefile.icc to compile the IC Compiler. Usage:

make -f makefile.icc
Note: All definition types must always be specified, except $IC_ID.

4. THE Ie MANAGER

This directory contains programs to use fuzzy IC manager.

www.manaraa.com

130 Chapter 8

Make File: The following make files contains paths that need to be
changed, if necessary.

Makefile.maincgi: generate main.cgi that will trigger ICs.
Makefile.showcgi: generate show.cgi that will display all ICs.
Makefile.clearcgi: generate clear.cgi that will clear all ICs.

Header Files
I. Core Part: modules in this part should not be modified
ic.h: header file (constants and data structures) of the ic manager
II. Application Dependent Part: constants and data structures in the

header files in this part should be customized according to the application.
app.h: constants and data structures of your application
fuzzy.h: the header file for message codes and thresholds of ic types
It is included in fuzzy.c.

mm.h: structures for internal memory of ic's
If you define mm.h, define the including of mm.h in ic.dat so that
app.h will include mm.h.

C Files
I. Core Part: modules in this part should not be modified
main.c: the web-based driver functions.
ic_manager.c: ic manager
icjunctions.c: functions called by ic manager
util.c: functions to create C structures for f, g func60ns and messages
to dump the content of various structures.

fuzzy.c: functions to implement fuzzy computation.
clear.c: a function to clear all ICs.
show.c: a function to display all current ICs.
II. Application Dependent Part: modules in this part should be

customized according to the application. Examples and/or templates are
provided for functions in each module.

driver.c: the text-based driver program
icjunc2.c: application dependent, but necessary functions
icjunc3.c: application dependent decoding functions
ic_state.c: functions to save and restore states of ic's.
actions.c: action functions

Input Files
*.in: f, g functions of index cell
fuzzy.dat: (not to be modified): fuzzy computation table.
ic.dat: IC specification for IC Compiler
*.tpl: template input file to IC Compiler (user can modify it)

www.manaraa.com

8. Pragmatics: Prototyping Multimedia Applications

Manuals
f.g format: f, g function format
output_ic_msg: the usage of "output ic" and "output msg"
in fg function format

ic_prog: manual for ic programming
msg.format: FAKE external message format for the testing of
your active index system

5. TAOML

131

This directory contains the TAOML interpreter. Makefile.intercgi will
generate an executable "inter.cgi". Makefile.inter will generate an executable
command "inter".

6. MICE APPLICATION DEVELOPMENT STEPS

The MICE Application Development Steps are as follows:
Step 1. Download IC_Builder to PC and use it to create *.in, *.gra and

ic.dat files.
Step 2. Upload *.in and ic.dat to your working directory. Create two sub­

directories called "source" and "TAOML". Leave *.in in this directory, and
move ic.dat to "source" directory.
Step 3. Change to source directory and do the following:
Step 3.1. Copy all the files from the three

directories IC_Compiler, IC_Manager and IC_Taoml.
to this "source" directory.

Step 3.2. Move ic.dat and action*.c files into the source directory.
Step 3.3. Invoke IC Compiler by typing:

icc ic.dat
Step 3.4. Use the makefiles to make main.cgi and inter.cgi:

make makefile.maincgi
make makefile.intercgi

Step 3.5. Move main.cgi and inter.cgi programs to parent directory.
Step 4. Create index.html that is the home page of your application.

It should invoke inter.cgi to go to another taoml page.
Step 5. Change to TAOML directory and do the following.
Step 5.1. create *.taoml pages which should invoke main.cgi to activate
ic's.

Step 5.2. create *.tpl pages which should invoke inter.cgi to access

www.manaraa.com

132 Chapter 8

Another taoml page, or invoke customized cgi to do special
processing.

Step 6. You are now ready to test the application. Use a web browser
to access your application's home page index.html.

••••. . .

• ' 1.. , ",' .

••
• 1

Figure 10. A visual diagram for MICE.

7. VISUAL INTERFACE FOR MICE

The visual interface for MICE is intended for the end user, so that the
user does not have to memorize the development steps and the details of
multimedia application development using MICE. As illustrated in Figure
10, VISUAL MICE provides a visual diagram. All the user has to do is to

www.manaraa.com

8. Pragmatics: Prototyping Multimedia Applications 133

follow the visual diagram and provide the appropriate information at each
step.

8. MICE APPLICATIONS

The MICE design environment can be applied to designing all kinds of
active multimedia information systems. In what follows, we describe a
recent application to active medical information system design [Chang98a,
Chang98b].
To accomplish the retrieval, discovery and fusion of medical information

from diverse sources, an active medical information system capable of
retrieving, processing and filtering medical information, checking for
semantic consistency, and structuring the relevant information for
distribution is needed. We have developed a framework for the human- and
system-directed retrieval, discovery and fusion of medical information,
which is based upon the observation that a significant event often manifests
itself in different media over time. Therefore if we can index such
manifestations and dynamically link them, then we can check for
consistency and discover important and relevant medical information.

fused knowledge

.abstracted
information

I 1

I time sequence. It

~
Of fram••

Qualltativ.
patiel deacrlptlonl

I a••ertions

I ".~..
I text

I

o

o

data !
i

sources

I

c-J III r---II IIII r-=!~ i
\ eigna' ! video ! . audio I l image I FnPhiC~ I text ! I pagee' I

i

Figure II. A framework for information and knowledge fusion.

This dynamic indexing technique is based upon the theory of active
index. A powerful newly developed artificial neural network is used for the
discovery of significant events. An experimental system was implemented,
and MICE was used as the prototyping environment to prototype-AMIS.

www.manaraa.com

134 Chapter 8

Figure 12. An active medical information system AMIS.

We will give an example to illustrate information fusion by
horizontal/vertical reasoning. Patient information is abstracted from
different media sources, including imaging devices, signal generators,
instruments, etc. (vertical reasoning). Once abstracted and uniformly
represented, the neural network is invoked to make a tentative diagnosis
(horizontal reasoning). Using the active index, similar patient records are
found by the Recursive Searcher (vertical reasoning). A retrieved patient
record is compared with the target patient record (horizontal reasoning). If
similar records lead to similar diagnosis then the results are consistent and
the patient record (with diagnosis) is accepted and integrated into the
knowledge base. If the diagnosis is different then the results are inconsistent
and the negative feedback can also help the decision network learn.

In the vertical reasoning phase, in addition to comparing patient data, we
can also compare images to determine whether we have found similar patient
records. Therefore, content-based image similarity retrieval becomes a part
of the vertical reasoning. Depending upon the application domain, image
similarity can be based upon shape, color, volume or other attributes of an
object, spatial relationship among objects, and so on.
This example illustrates the alternating application of horizontal

reasoning (using the LAMSTAR neural network for making predictions) and
vertical reasoning (using dynamically created active index for making
associations). Combined, we have an active information system for medical
information fusion and consistency checking.

www.manaraa.com

8. Pragmatics: Prototyping Multimedia Applications 135

A demo of the active medical information system can be found at:
http://www.cs.pitt.edul-chang and then click on Active Medical Information
Systems.
MICE has also been used to prototype an emergency management system

[Khali96], an intelligent multimedia information retrieval system [Catar98],
a multimedia distance learning system [Chang98c] and other multimedia
applications.

www.manaraa.com

Chapter 9

Systems: The Design of Multimedia Languages

1. INTRODUCTION

The inherent complexity and sIze of many multimedia applications
requires the introduction of proper software engineering techniques,
languages, and tools for mastering the specification, the development
process, and the dynamics characterizing their presentation. In Chapter 4, we
described how visual languages can be extended in order to capture the
dynamic behavior of multimedia objects [Chang96a).
The extended visual languages are called multidimensional languages

and are still based on the concept of generalized icons [Chang91). The user
can access and animate multimedia information by composing
multidimensional sentences, that is, by combining generalized icons
according to some spatial and/or temporal relations. The extended visual
languages can be used for the development of teleaction objects (TAOs)
[ChangH95b], multimedia objects that automatically respond to events, and
are particularly suitable for modeling multimedia presentations.
In this chapter we discuss the design of multidimensional languages for

specific application domains. The chapter is structured as follows. In
Sections 2 and 3 we describe in order the TAO model and the extended
generalized icons. In Section 4 we review the concepts uhderlying a visual
language design methodology. The new methodology is presented in Section
5, whereas an example is described in Section 6. Finally we discuss the
methodology in Section 7.

www.manaraa.com

138 Chapter 9

2. THE TAO MODEL FOR MULTIMEDIA

TAOs are multimedia objects capable of automatically reacting to events
and messages. The structure of the multimedia objects is represented through
an hypergraph G, whereas the event driven dynamic structure is represented
through a knowledge structure K called Active Index [Chang96a]. G is a
graph G(N, L), where N is the set of nodes and L is the set of links. A node
can represent a media type or even a TAO itself. Links can be of the
following types: attachment, annotation, location, and synchronization. An
example of TAO hypergraph is given in Figure 1.
The physical appearance of a TAO is described by a multidimensional

sentence, which is a spatial/temporal composition of generalized icons
[Chang9l], [Chang96a]. A multidimensional language is a set of
multidimensional sentences. The syntactic structure underlying a
multidimensional sentence controls its dynamic multimedia presentation.

3. GENERALIZED ICONS AND ICON OPERATORS

Generalized icons are dual objects x = (xm, xp), where Xmis the meaning
and x p is the physical appearance.
In visual languages the physical appearance xp is an icon image. In

multidimensional languages the concept of generalized icon has been
extended to represent all the different types of media [Arndt97], [Chang96a].
The following types of generalized icons have been defined:
• Icon: (Xm, Xi) where Xi is an image
• Earcon: (Xm, xe) where Xe is sound
• Micon: (xm, xs) where Xs is a sequence of icon images (motion icon)
• Ticon: (Xm, Xl) where Xl is text (ticon can be regarded as a
subtype of icon)

• Vicon: (xm, xv) where Xv is a video clip (video icon)
• Multicon (xm. xc), where Xc is a composite icon or multimedia sentence.
Also icon operators are dual objects op =(op m, op i), The physical part

(Op i) combines the physical parts of generalized icons, whereas the logical
part (opm) combines their meanings. Multidimensional sentences are
constructed by combining generalized icons through earcon operators such
as fade in or fade out, micon operators such as zoom in or zoom out, ticon
operators such as text merge or text collate, and temporal operators
[Allen9l].
In TAOs generalized icons are represented by nodes in the hypergraph,

whereas operators are represented by links. As an example, let us consider
the multimedia presentation Salerno Multimediale, a CD-ROM describing

www.manaraa.com

9. Systems: The Design ofMultimedia Languages 139

the city of Salerno. The presentation begins by displaying a cover image.
After the user touches the screen, a background sound is played and
animation starts. The latter is composed of a background image with a
rotating label "Salerno Multimediale" on it. After few seconds the rotating
label fades out and a falling curtain starts covering the background image.
The animation yields another background image with a menu overlaid on it.
The TAO hypergraph for this portion of the CD-ROM is shown in Figure 1.

4. A METHODOLOGY FOR VISUAL LANGUAGE
DESIGN

Based on the concept of generalized icons, we have developed a
methodology for the design of iconic languages [Chang94b], a subclass of
visual languages. Successively, the methodology has been extended to
accomplish the design of general visual languages [Poles98] and temporal
visual languages [Chang97].

TAO 1 TAO 2

Figure 1. An example of the hypergraph structure.

www.manaraa.com

140 Chapter 9

The design problem for visual languages is to encode the elements of an
application domain through visual sentences semantically close to them,
according to a certain metaphor. Let K be the set of domain elements to be
visually encoded, the phases to be executed in our design methodology are
outlined in Figure 2.

Basic Concepts

VisualLanguage .

Cl1Jstering I

Figure 2. The methodology for visual language design.

Initially, we need to build the domain K and a reduced knowledge base to
better characterize its elements. Then, we cluster K according to an
adaptation of the K-B-means algorithm to obtain a reduced set KB of
clusters representing basic concepts of the application domain. Successively,
the phase of icon design is performed to sketch a visual representation for
the elements of KB. For each word or concept Wi E KB we must sketch a
visual representation for Wi to derive a new generalized icon x = (Xm, Xi)
such that xm includes Wi. At the end we obtain a set I of basic generalized
icons. In the next step we should combine the icons in I through the
operators of the icon algebra [Chang91] to form visual sentences, for the
sake of visually encoding the whole set K. At this point, we should encode
each element w i from the language domain through a visual sentence made
of icons and operators. During the Coverage and Encoding phase we
construct a visual sentence S =(Sm , Si), run inferences to derive its meaning

www.manaraa.com

9. Systems: The Design ofMultimedia Languages 141

part Sm from the meaning parts of its component icons and icon operators,
and then use Si to encode the domain element Wi similar in meaning to Sm .
The final set of visual sentences form the language icon dictionary. Each

record of this dictionary contains a domain element, the visual sentence
encoding it, and a formal rationale explaining the association between the
word and the visual sentence. The final language is tested through special
tools to verify usability for the intended users. Finally, we need to construct
a visual grammar in order to generate a parser [Costa97a].

5. THE EXTENDED METHODOLOGY FOR
MULTIDIMENSIONAL LANGUAGES

We have extended our design methodology for visual languages to allow
the design of multidimensional languages. The design problem for
multidimensional languages is to derive a multimedia representation for the
elements of an application domain. In general, this process includes content
selection, media allocation, and media realization [Weitz94]. We see this
process as the derivation of a certain number of TAOs representing the
elements of the application domain in multimedia presentations. The
association between these elements and the TAO is also dynamically ruled
by the knowledge structure associated to the TAO. Thus, we have defined a
design process to derive the multidimensional language for expressing the
TAOs for a given domain.

5.1 Domain and Knowledge Construction

In this phase we have to build the multidimensional language domain K.
As opposed to visual language design here the language domain includes
more types of elements, such as images, sounds, etc. The frame structure for
the knowledge base includes some of the attributes used for the design of
visual languages, such as the attributes sound, time, location, color, and
shape. Some other attributes depend upon the application domain and are
used to express content. Their values include not only text but also image
and sound. As a consequence, these attributes can also have a special index
to be used for similarity matching. In fact, the similarity function to be used
for multidimensional languages needs to find similarity in sound or image,
for which it can use well known indexing and approximate matching
techniques developed for multimedia databases.

www.manaraa.com

142 Chapter 9

5.2 Modeling and Clustering

In this phase we first structure the domain elements by using object
oriented modeling techniques and then we perform Clustering by using the
class diagram and a special distance function. The distance function still
compares attributes to determine the similarity, but it will be using more
sophisticated and approximate matching techniques because of the presence
of complex types of data. For example, a text mentioning the painting of
Leonardo Monnalisa should be considered close and therefore clustered
together with a figure showing the image of MonnaLisa, and with all the
images having similar visual characteristics, such as colors, shapes, etc.

5.3 Generalized Icon Design

The input to this phase is the class diagram, the object diagrams and the
clusters determined in the previous phase. We need to translate their
information in terms of generalized icons. Thus, we first construct the
physical appearance of generalized icons and then their logical part. We can
decide to provide both a visual and a sound representation for a textual
information according to a certain metaphor.
After have sketched generalized icons for elementary information we

apply icon operators to compose multidimensional sentences. We exploit the
relationships of the class diagram and the clusters to understand the
appropriate operators to apply.

5.4 Approximate coverage and TAO generation

For each element of the domain we compute a set of multidimensional
sentences and a score indicating the type of similarity with a rationale
associated. This information will be used for TAO construction.
After have constructed a set of multidimensional sentences covering the

language domain, we can build a visual grammar and semantic routines to
produce the TAOs covering the domain elements. The parsing of the
sentences will control the multimedia presentation.

6. CASE STUDY

In this section we show an example on the use of our methodology for
the development of a multidimensional language to transform lectures into
multimedia presentation formats. We started from a domain language made
of textual lectures with transparencies comprising text, figures, tables, and

www.manaraa.com

9. Systems: The Design ofMultimedia Languages 143

movies on specific subjects. The goal was to derive the multidimensional
sentences expressing the TAOs for the multimedia presentation of the
lectures. An abstract class diagram for this example is shown in Figure 3.
Let us consider a transparency from a medical lecture on meniscal

surgeries as shown in Figure 4. The text item Umbrella handle has associated
the following frame in the knowledge base:

SLOT: VALUE
NAME: Umbrella handle
SHAPE: Sketch(Umbrella handle)
LOCATION: Middle of Knee
IMAGE: Overlay (This.Shape, Knee CT Scan)
TIME: Before(Before(Co start(This.text, This.Image), "Circle shape"), Movie!)

.Video

F}oame3

T~eatedinl.About

Length
Siring

am

Figure 3. The class diagram for the Lecture example.

www.manaraa.com

144

Figure 4. A transparency on Meniscal Surgeries.

Chapter 9

In the object diagram there will be an instance Meniscal Cuts of the class
Transparency, which is connected to the instance Meniscal Surgery of the
class Subject through the relationship Regards, to the instance Movie1 of the
class Movie through the relationship Invokes, and is composed of three
instances of the class Text Item.

The Image attribute is a query to an image database [Nappi98]. We run
such queries on the medical images of the language domain by using the
system FIRST [Nappi98] during the clustering phase. In this way we could
cluster images with similar meniscal anomalies together. During the
Generalized Icon Design we produced a vicon Movie1 and a ticon for each
of the three text items in the transparency. Then, the part-of relationship
between the transparency and its three text items suggested the introduction
of a multicon for the whole transparency Meniscal Cuts and the application
of the attach operator for each of the three text items. We applied the spatial
operator ver to combine the ticons. The Invokes relationship and the TIME
attribute from the frame associated to the transparency suggested the
application of the temporal operator before to combine the multicon with the
vicon. The SHAPE attribute of the the textual items "Umbrella handle" and
"Circular shape" suggested the sketch of two icons each depicting one of the
two shapes. The sketch queries contained in the IMAGE attribute caused the
linking during the clustering phase to examples of CT scan images reporting
similar knee anomalies. We could then decide to enrich the presentation by
combining the two ticons with either the two icons or even with some of the
CT scan images (represented as icons) resulting from the queries. A further

www.manaraa.com

9. Systems: The Design ofMultimedia Languages 145

decision was to be made on the spatial and temporal operators to use for
combining ticons and icons. For example, each ticon could be combined
with the associated icon by using the spatial operator overlay and the
temporal operators co start, co end.
The entry Meniscal Cuts in the language icon dictionary will have

associated several candidate multidimensional sentences and the rationale
for each of them.
An example of a rationale follows:

[Multicon[MeniscaCCuts] attach
[[ticon[umbrella] overlay + co_start + co_end icon[umbrella_cut]]
vertical [ticon[circular] overlay + co_start + co_end icon[circulaccutlll

before Vicon[Moviel]

We can easily generate the associated TAO from this rationale.

7. DISCUSSION

We have presented a methodology for the design of multidimensional
languages. The methodology serves as a prescriptive model for designing
multidimensional sentences to be used for visually specifying the structure
of Teleaction Objects. We need to further experiment the proposed
methodology on a broader class of multimedia applications. Moreover, we
need to refine logical icon operators to increase the generation of knowledge
for the active index of TAOs.

www.manaraa.com

Chapter 10

Systems: Distributed Multimedia Systems Design

One of the challenges in the design of a distributed multimedia system is
to devise suitable specification models for various schemas in different
levels of the system. Another important research issue is the integration and
synchronization of heterogeneous multimedia objects. In this chapter, we
present our models for different multimedia schemas and transformation
algorithms that transform high-level multimedia objects into schemas that
can be used to support the presentation and communication of the
multimedia objects.

1. INTRODUCTION

Recent advances in high speed communication networks, mass storage,
digital video, data compression, as well as the advocacy of the Information
Superhighway by the government, have stimulated the research and
development of the distributed multimedia system (DMS).
One of the challenges in the design of a distributed multimedia system is

to devise a suitable specification model for various schemas in different
levels of the system. Another important research issue is the integration and
synchronization of heterogeneous multimedia objects (MMOs).
Related works regarding the timing specification, i.e., the

synchronization, of multimedia objects for the purpose of presentation can
be found in [Bulte91, Hardm94, Li94, Little93a, Little90b, Stein90]. The
synchronization and integration of multimedia objects in the communication
network layer of multimedia systems has also been discussed in [Little90b,
Little91, Little93a, Little93b, Stein90].

www.manaraa.com

148 Chapter 10

In order to satisfy the requirements, for example real-time delivery, of
some multimedia applications, the quality of service (QOS) support of the
communication network and of the operating systems has been an important
research topic [Campb94, Little91, Merce93, Ramae92, Son93]. The quality
of service is also considered in the presentation layer of the multimedia
systems [Fujik95, Staeh94].
In our view, there are three different multimedia schemas in the DMS.

The Multimedia Static Schema (MSS) specifies the static structure of the
composite multimedia objects, including the temporal and spatial relations
among the objects.
The Multimedia Data Schema (MDS) specifies the properties of MMOs,

the properties of a set of objects as a whole, and the temporal relations
between the objects, thus supporting the integration and synchronization of
MMOs
The Multimedia Communications Schema (MCS) is derived from MDS

by adding further communication control and synchronization requirements
in order to satisfy the capacity constraint of processors, bandwidth constraint
of the communication network, as well as to effectively utilize the service of
the communication network. Finally, the network primitives are derived
from MCS to perform the transmission ofMMOs [Lin94, Lin95].
A hypergraph model is suitable to specify the structure of composite

MMOs [Hou94] and is employed to specify the MSS in this chapter. The G­
Net model [Deng90, Deng9l], a Petri net [Reisi85] based model, is intended
for the design and specification of complex information systems [Chang92].
Petri net based models have been proposed to serve as a suitable model for
the unified framework to specify different levels of the DMSs [Little90b,
Znati93] and the G-Net model is adopted in this chapter as the model for
both MDS and MCS. Thus, the transformation from an MDS to its
corresponding MCS can be formulated as the G-Net transformation from the
G-Net description of MDS to that of MCS [Lin94, Lin95]. The special
hierarchical feature of the G-Net [Deng90, Deng91] is utilized in the
transformation.
A key module in a distributed multimedia system is the Object Exchange

Manager (OEM). In order to exchange multimedia objects in a distributed
system, a uniform representation, such as MHEG (Multimedia and
Hypermedia Information Object Expert Group) [Colai94], is needed to
maintain all information of an MMO. The Object Exchange Manager
maintains and manages the uniform representation and interacts with other
system modules.
Our approach is neither to design a communication network protocol to

support QOS, nor to develop a powerful multimedia authoring tool. What
we propose is a novel idea of the feasibility of the transformation between

www.manaraa.com

10. Systems: Distributed Multimedia Systems Design 149

multimedia schemas, and the transformation will provide a unified
framework to support a link from application layer, synchronization and
integration in the presentation layer, down to the communication network
layer.
The chapter is organized as follows. In Section 2, the architecture of a

DMS and the transformation approach are presented. The models to specify
multimedia schemas and the transformation algorithms are described in
Section 3. An example that illustrates the transformation algorithms is
presented in Section 4. Section 5 describes the transformation from the MCS
to the corresponding network primitives that will accomplish the
transmission of the MMOs. The design and implementation of the OEM is
described in Section 6. Section 7 describes the implementation of our
experimental multimedia system, based on the transformation approach and
the object exchange manager. Section 8 discusses the future research issues.

2. THE ARCHITECTURE AND THE
TRANSFORMATION APPROACH

The architecture of a distributed multimedia system can be divided into
three layers: the application layer, the system layer, and the communication
layer. Figure 1 depicts the three layers and the relation among the layers.
When a user invokes the application, such as a multimedia message/mail
system, and initiates an MMO instance, an MSS is created, for example, by a
multimedia editor. The MSS is then transformed into the corresponding
MDS to support the presentation of MMOs and to serve as the input for
transformation in the next phase. Subsequently, the transformation rules are
applied to transform the MDS to its corresponding MCS, and then to the
network primitives to conduct the transmission of the MMOs according to
the specification [Lin94, Lin95].

www.manaraa.com

150

USER

Chapter 10

Figure 1. Transformation between multimedia schemas in a distributed multimedia system.

Due to the heterogeneous characteristics of MMOs [Stein90] and various
platforms which invoke multimedia applications, the specification of the
transmission ofMMOs involves the following factors:
1. the attributes of MMOs, including
• the size of each MMO
.the type of each MMO
• the structure ofMMOs

2. the hardware specification that describes
• the type of the machine
• the capability to display graphic objects
• the capability to display image objects
• the capability to playback audio objects
• the capability to playback video objects
• the type of display attached to the machine
• the type of audio system of the machine
• the capacity of the hard drives of the machine
• the bit rate of the communication network
• the quality of service (QOS) [Campb94, Fujik95, Ramae92] of the
communication network and the overall system. A request for
transmission can be accepted only when the transmission can be
guaranteed under the current specification of the QOS.

• the IP address of the user.
3. the transmission scenario specified by the user, such as
• which objects in the MMOs are to be transmitted
• the timing requirement
• the quality of service requested
• the heuristics to be invoked in order to negotiate with the QOS
manager. For example, in case the network cannot guarantee the
transmission due to a bandwidth constraint, progressive

www.manaraa.com

10. Systems: Distributed Multimedia Systems Design 151

transmission [Tzou87] for objects having types image or video
might be employed to transmit a low-resolution image/video first,
with a smaller size in comparison with the original object, and
then the refined image/video progressively.

USER INTERFACE

EDITOR I BROWSER

I
VlEWER

I
r..

L. ,::,.
MSS MDS

..,.. 4
V

I MSS--> MDS
OBJECf

INTEGRAnON TRANSFORMAnON EXCHANGE
AND MANAGER

SYNCHRONIZATION VMDS WMODULE NE1WORX

r I~BAcrMDS--> MCS

TRANSFORMAnON

M~tc=
I---

~

1QOSMANAGER 1-
NETWORK

MCSJjMANAGEMENT
MODULE

~PRlMlTIVES
TOCO~CAnONNE1WORX

Figure 2. The architecture of a distributed multimedia system.

The block diagram of the architecture of a distributed multimedia system and
the transformations between multimedia schemas in the system is depicted in
Figure 2. This architecture features a unified approach for the modeling of
multimedia application, presentation and communication, as a structure
consisting of the G-Net specification, attributes, procedures and relations.
The system consists of the following modules: User Interface, Object
Exchange Manager, Integration and Synchronization, and Network

www.manaraa.com

152

Management.

2.1 User Interface

Chapter 10

User Interface module deals with the domain-specific applications of
DMS. Possible applications could be: delayed teleconferencing [Hou94] for
the virtual office, virtual library and virtual laboratory. User Interface
module is closely related to applications. There are two kinds of user
interfaces: Generic user interface and application specific user interface.
Generic user interface is application independent, serving as a user interface
with the kernel DMS. Application users may not have access to this
interface if an extra application specific user interface and application layer
are built upon it. Four basic functions are provided in the generic user
interface: MMO editing, MMO browsing, knowledge generation, and MMO
presentation.
MMO editor provides facilities for editing an MMO hypergraph

structure. By providing a set of drawing functions, it enables users to create,
add, and delete nodes or links in the MMO hypergraph structure. It is a user
interface that gets the MMO hypergraph structure from the user. The
obtained hypergraph structure is stored in an internal C structure and can
then be translated into the Object Exchange Format (OEF) in ASCII (see
Appendix C).
MMO browser lets users walk through the MMO hypergraph structure

created by MMO editor. If one is interested in some node or link, he/she
simply selects(clicks on) that node or link. All attributes of that node or link
are then displayed. Generator is a knowledge acquisition facility. By
providing users with a user interface, it gets knowledge associated with an
MMO instance and converts it into a script of rule set. Knowledge is
represented as a (condition, event, action) triple internally. But users need
not be bothered to understand this internal representation. The presentation
module presents (displays or plays) the MMO by following the specification
in MDS and accessing the MMO hypergraph structure. The MDS and the
hypergraph structure of the MMO, i.e., MSS, are obtained from the Object
Exchange Format, which in turn may come from a remote site via network.
Object Exchange Manager
Object Exchange Manager(OEM) maintains an Object Exchange

Format(OEF) which contains all information of an MMO. It is a key module
in the DMS system which interacts with all other modules of the system.
OEM will be discussed in depth in Section 6.

www.manaraa.com

10. Systems: Distributed Multimedia Systems Design

2.2 Integration and Synchronization

153

Integration and Synchronization module looks into the overall properties
and behaviors of an MMO. It deals with spatial as well as temporal relations
within an MMO. It also takes into account the communication and
synchronization requirements. It performs MSS to MDS and MDS to MCS
transformations.

2.3 Network Management

Network Management module consists of a set of network primitives
carrying out MMO transmission. The supported network primitives are:
connection establishment, connection closing, message sending, message
receiving, and synchronization. It provides the network service as the result
of negotiation with the underlying transport service provider.

As shown in Figure 2, a user can invoke a Multimedia Editor/Browser to
compose MMOs. After the composition, MSS of the composed objects is
generated and sent to the Integration and Synchronization Module for
transformations into MDS and MCS. The Multimedia Viewer can then
utilize the MDS to view the presentation of the MMOs just created. If the
QOS manager cannot guarantee the transmission based on the MCS, the
Integration and Synchronization Module has to modify the MCS to negotiate
with the QOS manager. After the negotiation is achieved, the MCS will be
transformed into network primitives to perform the transmission. By
employing the concept of object exchange [Colai94], the Object Exchange
Manager is devised to maintain and manage the Object Exchange Format
[Xiang95] and to interact with the other modules in the system.

3. MULTIMEDIA SCHEMA MODELS AND
TRANSFORMATION ALGORITHMS

3.1 Multimedia Schema Models

An Object Exchange Format (OEF) has been defined to specify MSS
[Xiang95]. The underlying structure is a hypergraph structure. In the
hypergraph structure, each node represents an MMO, either a composite
object or a basic object. Among the nodes, there are a set of hyper-links
which connect nodes. Five types of links are described as follows:

www.manaraa.com

154 Chapter 10

• attachment links represent the structure of MMOs. An attachment link
connects a composite object with one of its sub-objects. Therefore, we
can have a hierarchical view of the whole MMOs.

• reference links link to the references of objects.
• spatial links specify spatial relations among objects.
• temporal links specify temporal relations among objects.
• annotation links connect the annotating and annotated objects.

On the other hand, the G-Net model is adopted to specify both MDS and
MCS of a distributed multimedia system [Lin94, Lin95]. A G-Net consists of
two components which are the Generic Switch Place (GSP) and the Internal
Structure (IS) [Deng90, Deng9l]. The GSP provides an abstraction of the IS,
while the IS, a modified Petri net, contains mainly place primitives and
transitions and describes the actual specification of the G-Net.
The G-Net descriptions of the MDS and the MCS can be specified as

follows:
1. Specify the global information about the schema in the GSP of the G­
Net.

2. Use place primitives to specify the information about each individual
object, synchronization points, and delays.

3. Use transitions to specify the temporal relations among the objects.
However, if the temporal relations are specified in the places, the
transitions can fire instantaneously and the model has the advantage
of compactness of representation [Little90b]. The G-Net model
adopts the latter specification.

3.2 The Transformation from MSS to MDS

As the hypergraph structure representing MSS in the OEF could be
complicated due to its rich set of links, the MSS is transformed into an
intermediate model first then into the MDS in order to simplify the
transformation. The intermediate model adopted here is based on the CWI
Multimedia Interchange Format (CMIF) model [Bulte91, Hardm94]
augmented by adding a delay attribute to each node in it. The CMIF model
is a hierarchically structured model for representing and manipulating
multimedia documents. In the tree view of the hierarchy of the CMIF model,
each internal node specifies the temporal relation, either parallel or serial,
among its children nodes and each leaf node represents a multimedia object.
By adding a delay into each node, various temporal relations can be
represented in a unified schema as described in the following paragraph. The
tree structure allows the employment of recursive algorithms to perform the

www.manaraa.com

10. Systems: Distributed Multimedia Systems Design 155

transformation. However, there is a restriction of the CMIF model that it
only provides synchronization between sibling nodes, i.e., nodes of the same
parent node. Thus, the temporal links between non-sibling nodes are not
processed in the transformation from MSS to 1M and stored in a set of links.
The temporal relations among objects are defined by the links in the

MSS. In the construction of the intermediate model, a temporal node is
generated in the 1M for sibling nodes connected by a temporal link in the
MSS. This temporal node will become a child of the node in the 1M
corresponding to the node to which those sibling nodes are attached in the
MSS. There are two categories of temporal relations between two objects:
parallel and sequential. The sequential category consists of two temporal
relations which are before and meet, while the parallel category consists of
five temporal relations: co-begin, co-end, equal, overlap, and during
[Little90b] .
The synchronization attributes of a temporal link include the temporal

relations and a temporal value, e.g., the gap between the end of an object and
the beginning of the other in relation before. Based on the synchronization
attributes, a delay attribute can be added to each node connected by the link
to specify the delay, where, of that node. A special value d, which stands for
don 't care for delay, is used for the temporal relation not specified definitely
among the objects. Three assumptions are made here. One is that the
temporal relation between sibling nodes in the MSS not linked by a temporal
link is defined as parallel with as d. Another is that the temporal relation
among the annotating objects and annotated object is the parallel relation
during, which is a reasonable interpretation. The third is that each object
linked by a reference link should have its own MDS, and consequently
MCS, as it will be presented and/or transmitted only when requested.
Therefore, the referenced objects will not be included in the MDS
transformed from the MSS. However, the information is kept in the MSS
and can be brought up when the objects are referred.
Figure 3 illustrates the construction of an intermediate model.

www.manaraa.com

156

' _.. -' temporaJ links
attachment links
annotation link
(al HVPer!1:raph StruetlJre

I

G

Chapter 10

(bl ConceptuaJModeJ

Figure 3. Construction of the Intermediate Model.

(a) Parallel Insertion

Sya<:ilroaization
Point

Sya<:~tinn delay object delay obj"" Syncl,troaiUltiOll
Pomr........ ~I ~~e~1 _~ _ J>~e ~I J'~ ~I _p~t
~ ...~

Sya<:bronization delay object delay object delay·· . - .. opject Sya<:hr00i7.atiOll

Q POint~ ...~~POint

(b) Sequential Insertion

Figure 4. The insertion of an object in the IM-to-MDS' transformation. The object is enclosed
in a dotted ellipse.

The transformation from 1M to MDS is divided into two phases. In the
first phase, a temporary G-Net MDS' is transformed recursively from the
intermediate model. In the second phase, the temporal links stored in the set
L are processed by adding auxiliary places and transitions onto MDS' to
complete the construction of the MDS.

When transforming from 1M to MDS', two places and one transition are
created to represent each node in the corresponding MDS'. One place is the
input place while the other place is the output place of the transition. The
input place, which is called the delay place, represents the delay of the node,
handles temporal links linking non-sibling nodes, and provides possibly
further synchronization. One type of scenario for more flexible
synchronization is fuzzy scenarios [Li94]. For example, three multimedia
objects are specified to be presented in parallel while the order for
presentation is not that important. With the employment of the value d, we
can formulate a G-Net that describes this scenario. The modeling of fuzzy
scenanos and other synchronization scenarios illustrates a unified

www.manaraa.com

10. Systems: Distributed Multimedia Systems Design 157

construction of the MDS' can be achieved. The output place indicating the
object represented by the node and is called the object place. There are two
scenarios of inserting an object into the schema according to the temporal
category of its parent node and each scenario should be handled differently.
Figure 4 describes both scenarios of parallel insertion and sequential
insertion.

Tcmpol3l R<1alioD& ~p"rJll3Pb; IIIlcrlDCdi.a1lC: Mode!l; Two C"'r;oril:. ofR<latiaD& iDG-Nct MDS

~ a6~b
SI!QUENIIAl. RELA'IION

a bcfD'" b

~l)W
l>;.=O I>,,=ll

Thmp:bcfDld 0
a me:etz b ~ a70b

Sylle. Sylle.

Point Objecta Objectb Point
I . I hi

l>;.=O 0..=0
'Thmp:mcct

acquall;b

~ a70b

PARALLl!l R1!LA'IION

E3 l>;.=O 0..=0
Thmp:cqua.l

a O'ICrlaJll' b

~ aAbLI
l)L..£J l>;.=O I>,,=ll

Thmp:O'ICrlap. I>

adurinr;b

~ af\b0G:?I I ~ 1>,,=0
Thmp:durinr;.1>

aoo-ber;iD&b

~ aAb

Ee:::J l>;.=O 1>,,=0 Objectb
Thmp:oo-ber;m

a CD-cndi b

~ a?'ob

~ ',,- li,:r"--r,, o,;.c
Thmp:OO<Dd

Figure 5. The temporal relation between two objects and the corresponding structures.

The temporal relations between two objects and the corresponding
hypergraph structure, intermediate model, and MDS' that represent the
relations are depicted in Figure 5.
The last step in the transformation is to process the non-sibling links

stored in the set L previously. The idea is to make use of the delay place of
each object as well as to generate auxiliary places and transitions to provide
synchronization according to the temporal attribute of a link.

www.manaraa.com

158 Chapter 10

Figure 6 shows the detail of processing a link from object Ml to M2.

MDS'

delay place object place

~
delay place object place

ro---+-GH
SEQUENTIAL RELATIONS PARALLEL RELATIONS

delay place object place aux. place' delay place object place delay place object place

~I H H
MDS

aux. place aux. place

~
[X rx

H H
delay place object place delay place object place delay place object place

Figure 6. The construction of MOS from MOS' by processing non-sibling links in the MSS

The value of the duration attribute of the auxiliary place is shown by the
table in Figure 7.

Temporal attribute of link S S.attribute Pa ux ,duration t x

Meet
Before,8
Equal
Co-begin
Overlap,8
During,8
Co-end

Figure 7. The value of the duration attribute of the auxiliary place.

The high-level description of the MSS-to-MDS transformation algorithm
is illustrated in Algorithm 1. The details of the subroutines are given in
Appendix A.

www.manaraa.com

10. Systems: Distributed Multimedia Systems Design

Procedure MSS-to-MDS (OEFMSS , GMDS)

begin
/* Transform the MSS to an intermediate model of tree structure 1M.

Links in the MSS are processed except non-sibling temporal links
in the MSS which will be stored in the set of links L. */

MSS-to-IM (OEFMSS , 1M, L)
/* Call recursive function to construct a temporary G-net GMDS from 1M

. */

R = root of 1M
newplace(P)

GMDS '=IM-to-MDS' (R, P)

/* Process non-sibling temporal links to complete the construction of
G-net GMDS ' */
MDS'-to-MDS (GMDS ', L, GMDS)

end

3.3 The Transformation from MDS to MCS

159

o~--;;..{
Syucbrollizatian
Point

)-~S""'YDCQ~tioll q
Point

0:0
SyllChroJJizatioll

Poillt

Figure 8. G-Net transformation when applying progressive transmission on object.

Once the MDS is constructed, we do not have to reconstruct the
corresponding MCS from scratch. By defining a transmission vector that
specifies which types of objects are to be sent and the parameters of the
heuristics, for example, levels of progressive transmission, the MCS can be
constructed from MDS by applying the delete operation and heuristics such
as progress operation on the corresponding objects.

www.manaraa.com

160 Chapter 10

The tranSITIlSSlOn vector serves as an input parameter of the
transformation. The values of the entries in the transmission vector are
defined by both the hardware capacity of the machines and transmission
specification provided by the user.
Another input parameter is the quality of service (QOS) of the

communication network which consists of two fields, namely QOS.request
and QOS.support. QOS.request is the QOS requested by the user while the
QOS.suppor is the QOS guaranteed by the system. Therefore, given the
MDS, the transmission vector, and QOS, the transformation is performed in
three steps described as follows.

1. Copy GMDS to GMCS.
2. Check the transmission vector to delete the places in the G-Net
structure of the MDS corresponding to the objects not to be sent. In
order to keep the semantics of the schema, the place is logically
deleted by re-defining the place, such as making it a synchronization
point, without physically deleting the place from the net.

3. If QOS.support is less than QOS.request, apply heuristics to degrade
QOS.request. Replace each place corresponding to an object whose
quality needs to be degraded with an ISP [Deng90, Deng91]
containing a G-net representing the heuristics invoked. For
examples, a G-Net representing progressive transmission can be
applied to image objects, and a G-net representing dropping frames
can be applied to video objects. In the case where progressive
transmission is employed for an image the algorithm progress (short
for progressive) will apply. Figure 8 shows the transformation of this
scenario wherein the algorithm progress is applied on object and a
rough object is sent first, followed by its progressive details.
However, after an object is sent, the transmission of other objects
does not have to wait for the transmission of the details to be
completed. The details could be transmitted later when the
bandwidth of the communication network is enough.

The following algorithm describes the transformation from MDS to
MCS.

Procedure MDS-to-MCS(GMDS' TV, QOS, GMCS)

/* Algorithm 2: G-Net Transformation from MDS to MCS */
begin
GMCS =GMDS

for each object place P in GMCS

www.manaraa.com

10. Systems: Distributed Multimedia Systems Design

if (TV[MMType(P.object)] == NO)
Delete(GMCS, P.object)
if (QOS.request > QOS.support)

ratio = QOS.request / QOS.support
for each object place P in GMCS

switch (Heuristics)
COMPRESS: Gp=ISP(hl(ratio»

break
PROGRESS: G p =ISP(h2(ratio»

break

replace(P, Gp)

end

161

For example, we can define QOS.request and QOS.support as follows:

QOS.request ='1'1 (GMDs,T)
QOS.support = '1'2 (QOS.network)

where GMDS is the MDS, T is the time specification, and QOS.network is the
QOS parameters provided by the communication network.
For example, a full-colored (24 bits/pixel) image of dimension 320 x 240

is requested to be transmitted in over a communication network with
bandwidth 14400 bps. The size of the image is 1800 Kbits and the bit rate
requested is 225 Kbps > 14400 bps. The utilization ratio ratio = 16.
Therefore, we need to apply heuristics to reduce the quality of the image in
order to fit in the service provided. Two possible heuristics, namely image
compression and progressive transmission, are depicted in Figure 9.
In general, QOS.request and QOS.support are also vectors, so that the

component-wise comparison will lead to the execution of different
heuristics.

www.manaraa.com

162

(al The MDS of an image.

Chapter 10

~ge'
ei<fitl'~~
6:1 compression

(b) ISP(hl) imdces G-net hI to do 16:1 compression.

Icl ISPlh21 invokes G-net h2 to perform ptoldressive transmission.

Figure 9. Applying heuristics to the image to be transmitted.

4. AN EXAMPLE OF THE TRANSFORMATIONS

textl

:'. reference

,,,,,;poraJ:i><·fo,,,,2
(a) The MSS hyperRtaph ,rruew", for"", annotated proposal (b) The intermedimemodel derived fromMSS in (a).

Figure 10. The MSS hypergraph structure and the intermediate model of the annotated
29medical report.

www.manaraa.com

10. Systems: Distributed Multimedia Systems Design 163

Figure JJ. MDS derived from MSS shown in Figure 10.

Figure 12. MCS derived from MDS shown in Figure 10. The places enclosed by dotted line
represent objects processed in the transformation.

A medical doctor Smith is preparing a report for his supervisor Kessler
and his group members Wang and Larson. His report CO contains a text file
of a medical record, an audio memo recorded by himself, and a nuclear
image of the patient. The text also refers to a confidential report C2 for his
supervisor Kessler only. Suppose Smith receives two annotations about the
image in his proposal. One annotation is a text while the other annotation
C1 is composed of an animation, an audio, and another text where the audio
will start to play two seconds after the animation has been played. Figure
lOa shows the MSS of report CO proposal which includes all the different

www.manaraa.com

164 Chapter 10

types of nodes and links in the hypergraph structure to specify the static
structure of the multimedia objects.
The MSS modeled by the hypergraph structure can be transformed into

the corresponding MDS according to the MSS-to-MDS algorithm described
in Section 3.2. Figure lOb illustrates the intermediate model derived from the
MSS. The number after the comma in each node represents the value of the
delay attribute of the object. Figure 11 is the MDS constructed from the
intermediate model.
Suppose that the receiving end does not have audio device and the

bandwidth of the communication network is not enough to transmit the
image object unless the size of the image is reduced in order to obtain the
guarantee form the QOS manager. By applying Algorithm 2, MCS is
transformed from MDS by deleting the audio objects and then employing
progressive transmission on the image object. The resulting MCS is shown
in Figure 12 in which a two-level progressive transmission is applied on the
image object, where image. 1 is an image of a lower resolution to be
transmitted first while image.2 and image are the data to be transmitted
progressively in order to fill up the detail of the original nuclear image.
Optimization is possible to reduce the complexity of the G-Net of an

MDS. Various heuristics can be devised based on properties of the
application. Figure 13 shows an optimized version of MDS in this example
by deleting places with delay 0 and their output transitions.

Figure 13. Optimized version of MDS shown in Figure 10.

www.manaraa.com

10. Systems: Distributed Multimedia Systems Design

5. THE TRANSFORMATION FROM MCS TO
NETWORK PRIMITIVES

165

The MCS is depicted by a G-net graph. A G-net is composed of places
and transitions. In a place we can describe what kind of action will be
performed. For example, a commonly performed action is to send an MMO
into the multimedia communication network. A transition tells us which
place(s) will be enabled next.
There are five network primitives [Lin94, Lin95]:

• open(MMO_id)
• send(MMO_id, type, time_spec, priority, progress_flag)
• retrieve(MMO_id, type, time_spec, priority, progress_flag)
• synchronize(MMO_id)
• close(MMO_id)

The MCS will be transformed into a sequence of these five kinds of
network primitives. Using for example TCP/IP Unix mail commands,
MMOs can be sent or retrieved between two machines.

All MMOs can be classified into three classes, which are real time,
restricted, and best effort. The real time class includes the objects specified
as real time by the users, the objects to be retrieved and specified as real time
retrieval by the remote users, and the first object in a progressive
transmission. The restricted class includes all objects specified by the users
as time restricted objects. For example, a user can request the transmission
of an image to be completed in eight seconds. The best effort class includes
all objects with no time restriction, for example, the details of a
progressively transmitted object.
The program MM_Send will send all MMOs in the real time class first,

then the restricted class, and the best effort class last. When MM_Send sends
objects in the restricted class, it must make sure that all MMOs in the real
time class have already been sent. In the same way, when MM_Send sends
objects in the best effort class, all MMOs in the real time and the restricted
classes must have been sent beforehand. A special type of object, retrieve,
can be sent to request retrieval of MMOs from the receiver. A G-Net of
MCS, , is embedded in the retrieve type object to specify the communication
schema of the retrieval.
Another program MM_Receive will check either the system mailbox or a

directory specified by the user for the retrieval of MMOs. In the former
case, the MMOs are extracted from the system mailbox and put into
directory Itmp/MM ready to be transmitted. Another task of is to deal with

www.manaraa.com

166 Chapter 10

retrieve type of MMOs and informs MM_Send program to send MMOs to
the remote requester according to the embedded MCSretrieve.

6. MULTIMEDIA OBJECT EXCHANGE MANAGER

6.1 Design and Implementation of OEM

To exchange the MMOs in the distributed multimedia system, we need a
uniform representation which is able to maintain all information of an
MMO. This requirement leads to the formulation of an Object Exchange
Format (OEF) (see Appendix II). The OEM maintains and manages the
OEF and interacts with other system modules. The object oriented approach
is adopted in designing the OEM.

6.1.1 The Object Exchange Format

The OEF consists of five parts: header part, node part, link part,
knowledge part, and raw data part, as illustrated in Figure 14. A version
number of the OEF and the specifications of the MDS and the MCS
constitute the header part. The node part and link part contain information of
the Multimedia Static Schema (MSS). Conceptually, the MSS is equivalent
to the MMO hypergraph structure while the MDS and the MCS are derived
from the MSS. They reflect the spatiaVtemporal relations in the MMOs as
well as the communication and synchronization requirements.

www.manaraa.com

10. Systems: Distributed Multimedia Systems Design 167

Each node consists of:
raw data
attributes
p'rocedures
links

"

composite ",
object

e1embtary
object

video '

'. '" '. A Multimedia Object

audio", text image

Object Exchange Format

Header Part Node Part Knowled ge Part Raw data Part

Figure 14. Object Exchange Format.

Our design goal is to formulate a simple yet flexible OEF for our
prototype system. It should adapt to the MHEG multimedia object standard
[Colai94] easily. To achieve simplicity, the OEF is defined as an ASCII text
stream, with blank space as a delimiter. The beginning and ending marks
for parts and fields are fixed as three-letter abbreviations, For example, the
node part's begin mark is denoted as NPB and the node part's end mark is
denoted as NPE.
The simplicity makes it easy to implement the OEF without

compromising functionality. The OEF reserves room for future extension by
setting NIL fields in order to keep flexibility and extensibility.

6.1.2 Object identification and classification

Five classes are identified when analyzing and designing the OEM. They
are mds, mcs, mss, knowledge, and rawdata. Class mss is further
decomposed into two classes which are node and link. The top level class
mmo contains the above five classes and is the generalization of a composite
MMO. An MMO has only one static hypergraph structure, one knowledge
structure, and one raw data. Only one MDS and one MCS exist at any point
in time. Thus, an mmo class instance consists of only one instance of each
of the five classes. The class diagram of the OEM is shown in Figure 15. In
the class diagram, there is no A kind of relationship among classes. Thus, no
inheritance relationships exist in the class hierarchy. There is only the
containment relationship in the class hierarchy. For example, class mmo

www.manaraa.com

168 Chapter 10

contains class mms, mds, mcs, knowledge, and rawdata. Class mss contains
class node and link.

Figure 15. OEM Class Hierarchy.

6.1.3 Class description

The instances of the five classes (mds, mc.\', mss, knowledge, and
rawdata) are combined into the MMO represented in Object Exchange
Format (OEF). Physically, an MMO in the OEF is an ASCII stream which
can be read, written, and transferred. Besides this common data, classes
also have their own internal data structure.

6.1.3.1 Class mds and mes:
The internal data of class mds and mes are similar. They are G-Net

specificati6ns describing the spatial/temporal and synchronization relations
within the whole MMO. The basic operations are put and get - put a G-Net
specification into the Object Exchange Format and get a G-Net specification
from the Object Exchange Format.

6.1.3.2 Class knowledge:
Like class mds and mcs, class knowledge has only two basic operations:

put and get. The meanings are similar to those in class mds and mcs. But
the internal data are different. Now the internal data is the private
knowledge of the MMO, represented as a set of rules, each of which consists
of condition part and action part. The rule set can be written in a script
language. Therefore, what the put or get here does is just to put/get the rule
set to/from the Object Exchange Format.

www.manaraa.com

10. Systems: Distributed Multimedia Systems Design 169

6.1.3.3 Class rawdata:
This class manipulates directly on the raw data of objects. It either gets

raw data from the OEF, or puts raw data into the OEF. Besides, after getting
raw data from the OEF, it can present the data according to its media type.
The presentation will be performed by following the specification of the
MDS.

6.1.3.4 Class mss:
This class keeps all the information of the MMO hypergraph structure, or

MSS. The hypergraph is made of nodes and links, so the class mss contains
two lower-level classes: node and link where actual node and Enk
information are maintained. In practice, mss maintains two linked lists, one
for nodes, one for links. The basic operations are put the MSS into the OEF
and get the MSS from the OEF, add/delete a unit to/from the node linked
list, and add/delete a unit to/from the link linked list. The node and link data
are stored in an internal C/C++ structure. The C/C++ structure is
instantiated by the MMO editor and shared with the MMO browser in the
User Interface module. When the MSS is to be put into the OEF, the C/C++
structure is translated into ASCII stream and vice versa when we get MSS
from the OEF.

6.1.3.5 Class mmo:
This is the top-level class that contains the above five classes. It puts all

the data in its five component classes into the OEF and gets data from the
OEF and feeds them back into the five classes. Besides, the class mmo has a
send operation which sends the OEF through network by calling MMS
network primitive and a receive operation which receives the OEF by calling
MMR network primitive. It also has retrieve operation which fetches an
OEF from a remote site and a present operation which makes presentation
based upon the MDS specification. It also processes the data in the header
part ofOEF.

6.1.3.6 Class node:
This class contains detailed information of a node in the MMO

hypergraph structure. It includes information such as node id, file name,
media-type, size, location, etc. Class rawdata is defined as friend of the
class node which means all methods of class rawdata can access private data
in class node. This is necessary because when accessing the raw data of a
node, one has to know such information as media type, size, and location of
the raw data. This information is kept in class node. So class rawdata
should have access to private data of class node. It seems that this approach
breaches the wall between objects thus violating the principle of information

www.manaraa.com

170 Chapter 10

hiding, but sometimes it is necessary and convenient to do so in the
implementation.

6.1.3.7 Class link:
This class contains detailed information of a link in the MMO

hypergraph structure. It includes information such as link id, type, starting
and ending nodes, direction, etc. Similar to the other classes, the main
operations are put/get link data to/from the OEF.

6.1.4 User Interface

In the DMS, the OEM does not interact with application users directly.
The system user interface provides an interface to edit or browse an MMO
hypergraph structure. The OEM is just a call back function of the system
user interface. Nevertheless, the OEM is a key module in the DMS which
interacts with all other modules. To give advanced users direct control over
the OEM, a user interface is developed. Through this user interface, users
can create an MMO hypergraph structure, or MSS, by entering node and link
information, convert the MSS into OEF, send the OEF over network, receive
incoming OEF, etc.

6.2 Interactions between Object Exchange Manager and
other modules

In Figure 15, we see that all other modules will interact with the Object
Exchange Manager. As the name "Object Exchange" implies, these
interactions are for the purpose of exchanging object information. In this
section, we will discuss what and how interactions are performed involving
the Object Exchange Manager and other modules.

6.2.1 Interaction with User Interface module

Basically, all information about a multimedia object MMO in a specific
application domain comes from the application itself. But some information
items arrive at the OEM directly from applications, while some are indirectly
fed into the OEM. The information of the hypergraph structure is obtained
from the User Interface module. In other words, the node and link
information in the MMO hypergraph structure are passed to the OEM from
the User Interface module. There are two important User Interface
submodules: MMO editor and MMO browser. The MMO editor provides an
editing environment for creating, modifying, saving, and loading multimedia
object hypergraph structure. The MMO browser lets a user navigate through

www.manaraa.com

10. Systems: Distributed Multimedia Systems Design 171

the MMO hypergraph structure, selecting, viewing, and annotating nodes of
interest.
Once a user finishes editing or modifying an MMO, the User Interface

module may pass the information of theMMO hypergraph structure
(contained in an internal C/C++ structure) to the OEM. Then OEM converts
this internal hypergraph structure into an external OEF which is stored in a
temporary file in local disk. In practice, the internal C/C++ structure can be
shared by the User Interface module and the OEM. The procedures in the
OEM could become the callback functions in the User Interface module
which is implemented as an X-window application. When an MMO browser
in the receiver end is to browse the MMO hypergraph structure, the OEM in
the receiver end will have to first extract the hypergraph structure or MSS
from the OEF, then convert it to the internal C/C++ structure in the browser.
Finally, the browser can browse the hypergraph by accessing the internal
C/C++ structure. If a user invokes a browser to view the MMO hypergraph
structure created locally, the browser will get the hypergraph directly from
the MMO editor instead of retrieving it from the OEM.

6.2.2 Interaction with Integration and Synchronization module

The Integration and Synchronization module derives an MDS from the
MSS and generates an MCS as the result of the negotiation with the
underlying network layer. Once the MDS and the MCS are available, it calls
OEM to store the MDS and MCS data into the OEF. On the other hand, the
OEM module can retrieve MDS and MCS data from the OEF and pass them
to the Integration and Synchronization module or the Presentation module.
So the involved interaction is just passing data back and forth. As we know,
MDS and MCS are G-Net specifications in ASCII text form [Chen92]. So
the storing and retrieval of MDS and MCS data are trivial.

6.2.3 Interaction with Presentation module

When the OEF arrives at the other end of network, the presentation
module needs the information contained in it to present the MMO to users.
However, it does not access the OEF directly, it only accesses the internal
C/C++ structure converted from the hypergraph structure, or MSS, and MDS
embedded in OEF. With MSS and MDS, the presentation module is able to
present the MMO in a way intended by the MMO sender.

www.manaraa.com

172 Chapter 10

6.2.4 Interaction with Network Management module

Figure 16. Interaction with Network Management Module.

The interaction with the Network Management module is more
complicated. The OEM supports three operations: Send, Receive, and
Retrieve which perform the MMO transmission. The Send and Receive
operations call primitives MMS (Multimedia Send) and MMR (Multimedia
Receive) [Lin94, Lin95] in the Network Management module to perform
their functionality. Before sending and receiving, some side jobs are
necessary.
The network primitives need the MCS specification from the Integration

and Synchronization module. The sending of the MMO is done intelligently
in that it is guided by the MCS specification.
An open place and a close place [Lin94, Lin95] are constructed

beforehand and the object raw data are embedded between them. After
finishing all these side jobs, primitive MMS is called to send the OEF to the
receiver's end. On the receiver's end, the receiver is notified of the arrival of
any new MMO message. The receiver then performs the Receive operation
of the OEM, which in turn, calls primitive MMR in the Network
Management module to extract new MMO messages from the receiver's

www.manaraa.com

10. Systems: Distributed Multimedia Systems Design 173

system mailbox or a specified directory. The Retrieve operation enables a
user to retrieve an MMO from a remote site actively, not just waiting
passively for any new MMO's arrival. It calls a network primitive retrieve to
achieve the goal. Basically, the retrieve primitive makes use of FTP
mechanism to get the remote MMO. It is an operation in the OEM and is
written as a C shell script. There is also a similar retrieve primitive in the
Network Management module.
Before sending a non-text object, such as an image or an audio stream,

OEM might compress the raw data using for example JPEG compression
algorithm [Walla9l]. This greatly reduces the size of the MMO and thus
saves the precious network bandwidth and reduces the transmission delay.
On receiving such a compressed raw data, the OEM at the receiver's end
decompresses the raw data and restores it into original form.
The raw data of a multimedia object might be in binary form. To reduce

the overhead of the network layer, the OEM encodes the non-text raw data
into ASCII text form. The encoding algorithm used is called binary
encoding which is used in Columbia University's Imail [Smith92]. This
encoding scheme uses only 64 ASCII characters in encoded form. Figure 16
shows the process of constructing, transferring, and retrieving an MMO in
OEF.

7. IMPLEMENTATION OF THE EXPERIMENTAL
SYSTEM

We have implemented an experimental distributed multimedia system,
called the Distributed Active Multimedia System (DAMS), based on the
concept of transformation among multimedia schemas and the object
exchange manager, as shown in Figure 2. The system is implemented in the
X-Window environment on the SUN SPARCstation 5. The object exchange
manager is written in C++ programming language, while the other modules
are written in C programming language.
On the top level of the system is an application window which provides

an integrated user interface for performing various tasks. lllustrated in
Figure 17 is a screen dump of the application window. The pull-down menus
in the top portion of the window provide functionalities for editing, attributes
defining, playback, transformation, packing/unpacking to/from object
exchange format, transmission, etc. When composing a multimedia object,
the user can choose buttons in the left panel of the window to create links
and nodes for constructing the hypergraph structure of the MSS.

www.manaraa.com

174 Chapter 10

Figure 17. User interface window of the DAMS system.

Figure 18. Example of creating a composite object and invoking transformation in the DAMS
system.

Referring to the system structure shown in Figure 2, the steps of a typical
scenario to compose, view, send, and receive a composite multimedia object
in our system are as follows:

1. Editing the hypergraph structure of the MSS: The user can click on
Add in Edit pull-down menu and buttons in the left panel to create nodes and
links for the MSS. For example, in Figure 18 a composite object CO
composed of basic objects MO, Ml, and M2 is created. A temporal link

www.manaraa.com

10. Systems: Distributed Multimedia Systems Design 175

defining the temporal relation between MO, M1, and M2 is created. A
location link and an annotation link defining the spatial relation and the
annotation between MO and another composite object C1 are also created,
respectively. This hypergraph structure corresponds to the one shown in
Figure lOa.
2. Defining attribute: In the pop-up dialogue box brought up by clicking

on the options in the Aur pull-down menu, the user can define the attributes
of nodes and links in the MSS, such as media type of an object, the
corresponding file name, temporal relation defined by a temporal link, and
so on. For example, we can define in Figure 18 the type of MO as image and
M1 as audio as well as their corresponding file names. For the temporal link
linking MO, M1, and M2, the temporal attribute is defined as co-begin.
3. Performing transformation from MSS to MDS: After the MSS is

constructed, MDS in the Gnet pull-down menu, as shown in Figure 18, is
chosen to perform the transformation from MSS to MDS.

Figure 19. A screen dump of multimedia objects playback in DAMS.

4. Playback: Once the MDS is created, the user can view the
presentation of the composite multimedia objects according to the MDS by
clicking on Playback in Viewer pull-down menu. The playback by the

www.manaraa.com

176 Chapter 10

Presentation module is based on the token flow in the MDS. When a token
flows to a place in the MDS, the corresponding object is displayed. For
example, in Figure 19, a text, an image, and an audio are displayed as there
are tokens in their corresponding places. The corresponding MDS is also
shown at the lower right comer of the screen. Later on, when tokens flow to
placetext2, plaCetexl3 and place.nim, two more texts ("Tumor???" and "OK
here") and one animation (the freehand circle) are displayed as the
annotation of the image as shown in Figure 20. Note that a reference window
with text "Please see reference [C2l" is shown on the screen despite the
referenced object C2 is not a part of the MDS.

Figure 20. Another screen dump of multimedia objects playback in DAMS.

5. Performing transformation from MDS to MCS: By clicking on
MCS in the Gnet pull-down menu (see Figure 18), the MDS is transformed
into MCS.
6. Packing into OEF: The user then packs objects into an OEF file by

choosing Export in the Ex_Format pull-down menu.
7. Sending and/or depositing multimedia objects: The multimedia

objects will be sent after the user clicks on Send in the Transmit pull-down

www.manaraa.com

10. Systems: Distributed Multimedia Systems Design 177

menu. A Deposit option is also available in this pull-down menu for the user
to store the objects in a specified directory.

At the receiving end, the receiver can choose Receive in the Transmit
pull-down menu to retrieve the multimedia object and the corresponding G­
Net specification of the MDS from the mailbox. The user can then playback
the object according to the MDS.

8. DISCUSSION

In this chapter, we presented models for different schemas in a
distributed multimedia system, and algorithms to perform the transformation
between them. We then described a unified object exchange format (OEF)
for composite multimedia objects.
The hypergraph model provides the static structure of multimedia objects

with its rich set of hyperlinks, while the G-Net model provides flexibility
and power to combine different aspects of the DMS into an integrated
system. The G-Net model also enables a user to specify the MDS and MCS
at a high level of abstraction. Furthermore, the G-Net is hierarchical,
dynamic, and directly executable [Chen92]. The MSS-to-MDS
transformation algorithm transforms the high-level specification of MMOs
into a data schema that can be used to perform presentation of MMOs. The
MDS-to-MCS transformation algorithm transforms the data schema into the
corresponding communication schema that supports the transmission of the
objects.
The research issues currently under our investigation include the

modeling of interaction, fuzzy scenarios [Li94], and other synchronization
scenarios; the feasibility of our model on complex applications; detailed
specification and evaluation of the QOS parameters; the degradation model
and heuristics for the negotiation with the QOS manager; the adaptability of
the transformation algorithms in taking the dynamic feedback from the QOS
manager to adjust its behavior in order to optimize the usage of the
bandwidth in accordance with the reliability of the network; and the
heuristics for optimizing the construction of G-Nets that represent the MDS
and MCS.
The design and interaction of the Object Exchange Manager in the

distributed multimedia system was also described in this chapter. The Object
Exchange Manager has the functions of packing all MMO data into OEF and
unpacking all data in OEF to construct an active MMO, transferring OEF
through network using network primitives provided, and performing relevant

www.manaraa.com

178 Chapter 10

operations during packing/unpacking, such as compression/decompression,
and encoding/decoding.
Due to its object oriented design, the OEM has the advantages of easy

extension as well as information hiding and reusibilty. Besides, after
compression and encoding, an MMO could have a reduced size and could be
in ASCII form, making the transmission of the MMO scalible and flexible.
The OEM is independent of the underlying network. It can either use the
Network Management Module in our system or other network service.
Currently, our DAMS is using TCPIIP as the transport service provider, and
Ethernet as the underlying network. As this does not meet the needs of real
time presentation of an MMO, we plan to investigate and employ a more
suitable network service protocol.
Another research issue is the compatibility of our Object Exchange

Format to the existing and forthcoming standards, for examples, ISO
standards MHEG and PREMO (Presentation Environment for Multimedia
Objects) [Herman94]. Our Object Exchange Format will be revised to adapt
to the notations of the standards and the Object Exchange Manager will be
enhanced to support classes specified in the standards. Since the standards
adopts object-oriented approach, we believe that it will be feasible to
integrate our OEM into the object class hierarchy of the standards.

APPENDIX A: MSS-TO-MDS ALGORITHM

Procedure MSS-to-MDS (OEFMSS, GMDS)

begin
MSS-to-IM (OEFMSS, 1M, L)
L= root of1M
newplace(L)
GMDS ' = IM-to-MDS' (R, P)
MDS'-to-MDS (GMDS', L, GMDS)

End

Procedure MSS-to-IM (OEFMSS, 1M, L)
begin
L =the set of temporal links in OEFMSS

for each M in OEFMSS

create a node M' in 1M
NI =the set of nodes attached to M
N2 = the set of nodes annotating M
while (NI *- 0)
remove a node n from NI

www.manaraa.com

10. Systems: Distributed Multimedia Systems Design

if no node in N1 links to n via a temporal link
create a node representing n as a child ofM'
else
create a child Mt for M' in 1M
for each node m in N1 links to n via temporal link S
create a node representing m as a child ofMt
NI =NI- {m}

Mt.attribute = S.attribute
if(N2 ¢ 0)
create a node Mt in 1M
M' becomes a child ofMt
for each node n in N2
create a node representing n as a child ofMt

end

179

Function IM-to-MDS'(M, P)
begin
ifM is a leaf node in 1M
return P
else
split(P, Pi, Pj, Ti> Tj)
/* split place P into two places Pi and P j and two transitions Ti and Tj,
where Pi is the input place of Ti and P j is output place of Tj */

for each child n ofM
newplace(Pn.deloy)

newplace(Pn.object)

newtrans(Tn)

Ttmp = Ti

add_inpucplace(Tn, P n.de/oy)

add_outpucplace(Tn, P nobject)

if (M.attribute == PARALLEL)
add_outpucplace(Ti , P n.deloy)

add_inpucplace(Tj, P n.object)

if (M.attribute == SEQUENTIAL)
add_outpucplace(Ttmp, Pn.deloy)

if n is the last child processed
add_input_place(Tj, P n.object)

else
newtrans(Ttmp)

add_input_place(Ttmp, P n.object)

return IM-to-MDS'(n, Pn.object)

end

www.manaraa.com

180 Chapter 10

Procedure MDS'-to-MDS (GMDS ', L, GMDS)

begin
for each link S=(u, v) in L

M1 =the place in MDS' representing u
M2 = the place in MDS' representing v
newplace(paux)

/* the value of the delay attribute in Paux is described in Figure 7 */
Paux.duration = Tableaux(S.attribute)

if (S.attribute == SEQUENTIAL)
newplace(paux.)

newtrans(Taux)

add_inpucplace(outpuCtrans(M1), Paux.)

remove_inpucplace(outpuCtrans(M1), M1)
add_outpucplace(Taux, Paux)

add_outpucplace(Taux, Paux)

add_inpucplace(Taux, M1)
add_inpucplace(inpuCtrans(M2), Paux)

if (S.attribute == PARALLEL)
if «S.sub - attribute == during) or

«S.sub - attribute == co~end) and (M1.duration < M2.duration»)
add_outpucplace(inpuCtrans(M2), Paux)

add_inpucplace(inpuCtrans(M1), Paux)

else
add_outpucplace(inpuctrans(M1), Paux)

add_inpucplace(inpuCtrans(M2), Paux)

end

APPENDIX B: OBJECT EXCHANGE FORMAT

The object exchange format is illustrated in Figure 21.

www.manaraa.com

10. Systems: Distributed Multimedia Systems Design 181

Object Exchange Format

Header Part Node Part

Header Part

Version # MDS specification MCS specification

Node Part

I# ofnodes Inooe 11 node 21 "_"_"_"_" 1 nooe n I
Nooe

variable attributes

Link Part

I # of links I link 1 Ilink 2 1 " "_"_""__--'-I_lin_kn----...JI

Link

variable attributes

Irule n

Iraw data n I
Figure 21. Object Exchange Format.

APPENDIX C: OBJECT EXCHANGE FORMAT:
BNFSYNTAX

< Exchange_File> ::= < Begin> < Header_Part> < Node_Part>
< Link_Part> < Knowledge_Part> < Raw_Data_Part > < End>

< HeadecPart > ::= < Header_ParCBegin > < Version> <MDS > <MCS >
< Head_Part_End >

< Version> ::= 'DATAEXl.1 '
<MDS > ::= <MDS_Begin > < ascii_spec_oCG-net > <MDS_End >
<MCS > ::= <MCS_Begin > < ascii_spec_oCG-net > <MCS_End >
< Node_Part> ::= < Node_ParCBegin > < Num_oCNodes > < Node> *

< Node_ParCEnd >
< Node> ::= < Node_Begin> < Node_Fixed_Attribute >

< Node_Var_Attribute> * < Node_End>
< Node_Fixed_Attribute > ::= < Node_Id > < Node_Type> < Size>

< Location> < Offset> 'NIL'
< Node_Id > ::= < integer> (unique within MMO structure)

www.manaraa.com

182 Chapter 10

< Node_Type> ::= < N_Type > <Media_Type> <Media_Sub_Type >
< Size> ::= < integer> (actual size of node in bytes)
< Location> ::= 'LOCAL' I < ftp://machine-name/directory-path:file-name >

I 'NIL'
< Offset> ::= < integer> (offset from the beginning of raw data part,
regardless it's LOCAL or not)

< N_Type > ::= < Composite_Type> 1< Basic_Media_Type > I 'NIL'
<Media_Type> ::= < TexcType > 1< Image_Type> I < Audio_Type>
1< Video_Type> 1...

<Media_Sub_Type > ::= < TexCSubtype > 1 < Image_Subtype>
I < Audio_Subtype> 1< Video_Subtype> 1...

< TexCSubtype > ::= 'PLAIN' I 'RICH' I ...
< Image_Subtype> ::= 'GIF' 1 'JPEG' 1 'PBM' I 'PGM' 1 'PPM' 1...
< Audio_Subtype> ::= 'BASIC' I ...
< Video_Subtype> ::= 'MPEG' I 'QUICKTIME' 1...
< Node_VacAttribute> ::= < TexCAttribute > 1< Image_Attribute>
1< Audio_Attribute> I < Video_Attribute> I < Form_Attribute> 1 'NIL'

< TexCAttribute > ::= < charset > < Text>
< charset > ::= 'ASCII' 1 'EBCDIC'
< Image_Attribute> ::= 'IMAGE' < Image_Info>
< Image_Info> ::= 'COMPRESSION_ALG' 1 'PROGRESSIVE_TRANS'

I ...
< Audio_Attribute> ::= 'AUDIO' < Audio_info>
< Video_Attribute> ::= 'VIDEO' < Video_info>
< Form_Attribute> ::= < Attribute_Name> < Attribute_Value>
< Link_Part> ::= < Link_ParcBegin > < Num_oCLinks > < Link> *

< Link_ParCEnd >
< Link> ::= < Link_Begin> < Link_Fixed_Attribute >

< Link_Var_Attribute > * < Link_End>
< Link_Fixed_Attribute > ::= < Link_Id > < Link_Type> < Node_List>

< Direction>
< Link_Id > ::= < integer> (unique within MMO structure)
< Link_Type> ::= 'ATTACHMENT' 1 'ANNOTATION' I 'REFERENCE'

I 'SYNCHRONIZATION' 1 'LOCATION' 1...
< Node_list> ::= < Node_Id > * (a sequence of integers)
< Direction> ::= < Begin_to_End > 1< End_to_Begin > 1 < Undirected>
< Begin_to_end > ::= 'B'
< End_to_Begin > ::= 'E'
< Undirected> ::= 'U'
< Link_VacAttribute > ::= < Link_VacAttr> < Size> < Value>
< Link_Var_Attr > ::= < AttachmenCAttribute > 1< Annotation_Attribute>
1< Synchronize_Attribute> 1< Reference_Attribute> I ...

www.manaraa.com

10. Systems: Distributed Multimedia Systems Design 183

< Raw_Data_Part > ::= < Raw_Data_ParCBegin > < Raw_Data> *
< Raw_Data_ParCEnd >

< Raw_Data> ::= < Raw_Data_Begin > < Data> < Raw_Data_End >
< Knowledge_Part> ::= < Knowledge_ParCBegin > < Knowledge> *

< Knowledge_ParcEnd >
< Knowledge> ::= < Knowledge_Begin> < Rule> * < Knowledge_End>
< Rule> ::= < Rule_Begin> < Condition> < Action> * < Rule_End>
< Begin> ::= 'MMB '
< End> ::= 'MME'
< Header_ParcBegin > ::= 'HPB'
< HeadecparcEnd > ::= 'HPE'
<MDS_Begin > ::= 'MDB'
<MDS_End > ::= 'MDE'
< MCS_Begin > ::= 'MCB'
<MCS_End > ::= 'MCE'
< Node_ParCBegin > ::= 'NPB'
< Node_Part_End > ::= 'NPE'
< Node_Begin> ::= 'NOB'
< Node_End> ::= 'NOE'
< Link_ParCBegin > ::= 'LPB'
< Link_ParCEnd > ::= 'LPE'
< Link_Begin> ::= 'LIB'
< Link_End> ::= 'LIB'
< Raw_Data_ParCBegin > ::= 'RPB'
< Raw_Data_Part_End > ::= 'RPE'
< Raw_Data_Begin > ::= 'RDB'
< Raw_Data_End > ::= 'RDE'
< Knowledge_ParcBegin > ::= 'KPB'
< Knowledge_ParcEnd > ::= 'KPE'
< Knowledge_Begin> ::= 'KNB'
< Knowledge_End> ::= 'KNE'
<MDS_End > ::= 'MDE'
<MCS_Begin > ::= 'MCB'
<MCS_End > ::= 'MCE'
< Node_ParcBegin > ::= 'NPB'
< Node_ParCEnd > ::= 'NPE'
< Node_Begin> ::= 'NOB'
< Node_End> ::= 'NOE'
< Link_ParcBegin > ::= 'LPB'
< Link_ParCEnd > ::= 'LPE'
< Link_Begin> ::= 'LIB'
< Link_End> ..- 'LIB'

www.manaraa.com

184

< Raw_Data_ParCBegin > ::= 'RPB'
< Raw_Data_ParCEnd > ::= 'RPE'
< Raw_Data_Begin > ::= 'RDB'
< Raw_Data_End > ::= 'RDE'
< Knowledge_ParcBegin > ::= 'KPB'
< Knowledge_ParcEnd > ::= 'KPE'
< Knowledge_Begin> ::= 'KNB'
< Knowledge_End> ::= 'KNE'

Chapter 10

www.manaraa.com

Chapter 11

Systems: The Specification of Multimedia
Applications

Recent developments in computer technology have enabled large,
distributed multimedia applications to be created in such application areas as
education [Woolf95], health care [Wong97], and process control [Guha95].
These applications are often web-based and involve a large amount of user
interaction. All of these characteristics increase the complexity of designing,
coding and testing. The prototyping of multimedia applications based upon
software engineering principles has not yet been adequately addressed by
the research community although recently research interest in the area of
multimedia and software engineering has increased. An indication of this
increased interest is the convening of the first International Workshop on
Multimedia Software Engineering held in April 1998 as part of the
International Conference on Software Engineering [Hirak98]. In this
chapter, we apply software engineering methodology to the production of
multimedia applications introducing a principled approach to specify, verify,
validate and prototype such applications.
Our approach to multimedia application development is based on a

collection of tools which support the creation of Teleaction Objects (TAOs)
[ChangH95b, Grosk97]. A TAO is a multimedia object with associated
hypergraph structure and knowledge structure. The user can create and
modify the private knowledge of a TAO so that the TAO will react
automatically to certain events. The knowledge structure of a TAO is an
active index (IX) [Chang95a] which consists of a collection of index cells
(ICs). The hypergraph structure supports the effective presentation and
efficient communication of multimedia information. The static aspects of the

www.manaraa.com

186 Chapter 11

hypergraph structure are described by a Multimedia Static Specification
(MSS). TAOs are valuable since they greatly improve the selective access
and presentation of relevant multimedia information. The tools described in
this chapter provide a way to formally specify the TAOs comprising the
application, verify and validate the specification, and rapidly prototype the
application. The formal specification of the system is based on a Symbol
Relation (SR) grammar. Such a multidimensional grammar is particularly
attractive since it can describe the spatial and temporal aspects of the
application. The specification is converted into TAOML, an extension of
HTML.

1. STRUCTURE OF MULTIMEDIA
DEVELOPMENT SYSTEM

The structure of the multimedia application development system is
shown in Figure 1 below. It mainly consists of two tools. The Formal
Specification Tool allows a specification of the MSS to be created. The
specification may be either visual or text-based. The specification is then
validated using an SR grammar for TAOs. If the specification is valid, the
tool generates TAOML and an HTML template for the specified system.
The Prototyping Tool includes an IC Builder to create the index cells
comprising the knowledge structure of the TAOs. A TAOML interpreter
generates HTML code from the TAOML and HTML template and from the
information produced by the IC builder. The application generated can then
be executed from any web browser working with the distributed IC Manager
which controls the active knowledge structure built out of active index cells.

www.manaraa.com

11. Systems: Specification ofMultimedia Applications

Figure 1. The srructure of the multimedia application development environment.

187

The organization of the rest of this chapter is as follows. The following
section reviews the TAO concepts as presented in references [ChangH95b]
and [Lin96]. The TAOML extension of HTML is then introduced. This
language allows TAO-based systems to be executed from standard web
browsers. Section 3 presents a grammatical approach to the formal
specification of multimedia applications. Existing multidimensional
grammars are analyzed. The Symbol Relation Boundary Grammar (SR
Boundary) is chosen as a sufficiently powerful model. The use of this
grammar to guide a syntax-directed editor to create the MSS is discussed. A
grammar for TAOs is given in section 4. Parsers for this grammar are also
discussed. The limitations which must be imposed on the MSS in order to
have an efficient (non-exponential) grammar are given. An attributed form
of the grammar is introduced in order to associate static knowledge with the
MSS. Discussion and future research are given in section 5. The complete
grammar for TAOs is given in Appendix B, while the attributed form of the
grammar is given in Appendix C.

www.manaraa.com

188 Chapter II

2. TELEACTION OBJECTS

The use of grammatical formalisms inside of multimedia systems is the
most appropriate way to move from a purely manual approach towards an
automatic approach [Weitz96a). The advantages to be gained by this
approach include the possibility of introducing a graphical front-end for
TAO construction, automatic grammatical checking for the correctness of
the structure generated, and introduction of a syntax-directed editor. Finally,
the integration of both hypergraph and IX production in a single TAO
construction module that produces the hypergraph with the IX attached.
Teleaction Objects (TAOs) are multimedia objects with an associated

hypergraph representing the structure of the multimedia object and a
knowledge structure. The knowledge structure allows the TAO to
automatically react to certain events [ChangH95b].
From a structural point of view, a TAO can be divided in two parts: a

hypergraph G and knowledge K.
The structure of the hypergraph G is a graph G(N,L), where N is a set of

nodes, and L is a set of links. There are two types of nodes: base nodes and
composite nodes. Each node represents a TAO, and each link represents a
relation among TAOs and there are the following link types: the attachment
link, the annotation link, the reference link, the location link, and the
synchronization link. Base nodes and composite nodes are called bundled
when they are grouped, thus defining them as a single entity. The nodes
which are interior to bundled nodes may not be included in annotation or
reference links unless the link is to the exterior bundled node, and there may
not be spatial/temporal relations between interior nodes and nodes external
to the bundled node.
The knowledge structure K of a TAO is classified in four levels: the

System Knowledge, the Environment Knowledge, the Template Knowledge,
and the Private Knowledge. The knowledge is structured as an active index
(IX), which is a set of index cells (IC) from an index cell base (ICB). The
index cells define the reactions of the TAO to events filtered by the system.
An index cell accepts input messages, performs some action, and sends
output messages to a group of ICs. The messages sent will depend on the
state of the IC and on the input message [Chang96a]. An IC may be seen as
a kind of finite-state machine [Chang95a).
An initial approach to the definition of a multimedia language for TAOs

has been given in [Chang96a). The physical appearance of a TAO is
described by a multidimensional sentence. The language is generated by a
grammar whose alphabet contains generalized icons and operators.
Formally, a generalized icon is defined as x=(xm,x) where xm is the
meaning of the icon and Xi is the media object. Two functions,

www.manaraa.com

11. Systems: Specification ofMultimedia Applications 189

materialization and dematerialization, are associated with every generalized
icon. The first function derives the object from its meaning: MAT(xm)=xj;
the second derives the meaning, or interpretation, from the object:
DMA(xj)=xm·
The generalized icons [Chang87b] are divided into the following

categories:

• Icon: (xm, Xj)' where xi is an image
• Earcon: (xm, xe), where xe is a sound
• Ticon: (xm, xt), where xt is text (the ticon can also be seen as a subtype

of icon).
• Micon: (xm, xs)' where Xs is a sequence of image icons (motion icon)
• Vicon: (xm, x), where Xv is a video clip (video icon)
• Multicon: (xm, xc), where Xc is a multimedia sentence (composite icon).
The generalized icons are represented by nodes in the hypergraph while

operators are represented by links.

Example 1: Let us consider a kiosk in a train station which presents
tourist information about the surrounding area. The opening screen of the
presentation played by the kiosk displays an informative message inviting
potential users to touch the screen. When a tourist touches the screen a
video begins to play along with some background music. Beneath the video,
a sequence of text messages describing the video is displayed. At the end of
the video, a screen displaying information on local hotels is visualized. After
a short time, the initial message is displayed again and the system waits for
the next tourist. In figure 2, we show the hypergraph part of the TAO.

The ICs are attached to the hypergraph to define the actions of the TAO
as shown in Figure 3. Index cell ICI is attached to TAOI, Welcome, while
index cell IC2 is attached to TA02, Display. ICI is in the state SO until the
user intervenes with an action by touching the screen. When the message is
filtered by the system, it reaches ICI, which passes into state SI and sends a
message to IC2. IC2 passes from the dead state to the active state. It remains
in this state until its lifetime is finished or until the user intervenes causing a
stop action. This action will cause IC2 to return to the dead state and a
message to be sent to ICI which returns to state SO where it waits for a new
"touch" message.

www.manaraa.com

190 Chapter 11

Figure 2. Kiosk hypergraph.

Fetch

Figure 3. The les of the kiosk TAO.

www.manaraa.com

11. Systems: Specification ofMultimedia Applications

2.1 TAOML

191

To prototype a distributed multimedia application, each component of
the application can be realized as an IC associated with a rAO-enhanced
html page. Given a TAO-enhanced html page, we can use an interpreter to
read this page, abstract the necessary TAO data structure and generate the
normal html page for the browser. Therefore no matter which browser is
used, the application program can run if this TAO_HTML interpreter is
installed in advance on the web server. This can give some security
guarantees. The user can also choose a favorite browser. Furthermore, if in
the future HTML is out of fashion, the user need only update the interpreter
to output another language. The other parts of the application will not be
affected. In this section, we describe the TAO enhanced html named
TAOML.

In order to use TAO_HTML, or TAOML, to define a TAO, the
structure of a TAO is extended. The new form of the TAO has the following
attributes: tao_name, tao_type, p_part, links, ics and sensitivity. These
attributes are described below.
• 'tao_name' is the name of the TAO, which is a unique identifier of

each TAO.
• 'tao_type' is the media type of TAO - image, text, audio, motion

graphs, video or mixed.

• 'p_part' is the physical part of a TAO (see the definition of generalized
icon in [Chang87b]). To implement this in the context of TAO_HTML,
'p_part' here can be denoted by an HTML template which indicates the
appearance of an HTML page. Templates define the fundamental display
element and location arrangement. For example, if the TAO is of image
type, the template will just contain an HTML statement to introduce an
image. If the TAO is of mixed type, the template will define some common
parts and leave some space to insert the elements that are specific to the
TAO.
• 'links' are the links to another TAO. A link has attributes 'link_type'

and 'link_obj'. 'link_type' is either relational (spatial or temporal) or
structural (COMPOSED OF). In the context of TAO_HTML, a spatial link
describes visible relationship between subobjects inside one mixed object.
For example, a mixed TAOl contains an image TA02 and a text TA03;
then TAOl has a spatial link with both TA02 and TA03. A temporal link
usually refers to an invisible object that is not a display element, but whose
activation time is influenced by the other TAO. A structural link relates one
TAO with another dynamically via user input or external input. For

www.manaraa.com

192 Chapter 11

example, the user clicking a button in TAOl will invoke another page
TA02; in this case there is a structural link from TAOl to TA02.
• 'ie' is the associated index cell. The flag is "old" if the ic already

exists, or "new" if the ic is to be created. The ic type, ic_id list, message
type and message content can either be specified, or input at run-time by the
user (indicated by a question mark in the input string). A corresponding
HTML input form will be created so that the user can send the specified
message to the ics. For further details on the meaning of the attributes of the
index cells, see [Chang95a].
• 'sensitivity' indicates whether this object is location-sensitive, time­

sensitive, content-sensitive or none-sensitive. Then the same object can have
different appearances or different functionalities according to the sensitivity.
For example, if TAOl is content-sensitive, it is red when being contained in
TA02 while it is green when being activated by TA03 via a button. The
detailed meaning of sensitivity should be defined by the user according to
the requirements of an application. In the newest generation of browsers,
sensitivity can be implemented using style sheets.
• 'database' specifies the database that this TAO can access and/or

manipulate.

2.2 BNF form for TAO_HTML

The formal definition of the TAO_HTML language is given below.

TAO_HTML ::= <TAO> TAO_BODY <!TAO>
TAO_BODY ::= NAME]ART TYPE_PART P_PART LINK_PART

IC]ART SENSI]ART DATA_PART
NAME_PART ::= <TAO_NAME> "name" <!TAO_NAME>
TYPE]ART ::= <TAO_TYPE> TYPE_SET <!TAO_TYPE>
TYPE_SET ::= image I text I audio Imotion_graph Ivideo Imixed
P_PART ..- <TAO_TEMPLATE> "template_name"

<!TAO_TEMPLATE>
LINK_PART ::= empty I <TAO_LINKS> LINK_BODY <!TAO_LINKS>

LINK]ART
LINK_BODY ::= name = "link_name", type = LINK_TYPE, obj =

"Iink_obj"
LINK_TYPE ::= spatial Itemporal Istructural
IC]ART ::= empty I <TAO_IC> flag=FLAG ic_type="a_string"

ic_id_list="a_string" cgCpgm="a_string" message_type=t t a_string"
content="a_string" <!TAO_IC>
FLAG ::= old Inew

www.manaraa.com

11. Systems: Specification ofMultimedia Applications 193

SENSCPART ::= empty I<TAO_SENSI> SENSITIVITY </TAO_SENSI>
SENSITIVITY ::= location Icontent I time
DATA]ART ..- empty I <TAO_DATA> "database_name"

</TAO_DATA>

In the template of a TAO, in addition to the normal HTML tags and
definitions, there is a special TAO tag for a link relation with other TAOs. It
is defined as:
<TAO_REL> "link_name" </TAO_REL>

TAO_HTML Interpreter Algorithm. The TAO_HTML Interpreter
translates the TAOML pages into HTML pages so that the user interface is
easily implemented using a standard web browser. The TAO_HTML
Interpreter is now presented in pseudo-code.

procedure interpreter(string TAOname)
begin
open TAO definition file
while (not end of file) do
begin
read one line from the file
recognize tag

get tag information
store in data structure TAO_struct

end
call template-parser(TAO_struct)
end
procedure template-parser(TAO_structure TAO_struct)
begin
if (IC_PART is specified) then
output HTML statements to create a form to accept

user's input and
send message to the ic's through IC_Manager

if (template file exists) then
open template file
while (not end of file) do
begin
read one line from the file
if (not <TAO_reI> tag) then
output html text
else
begin

www.manaraa.com

194

get link_name from the <TAO_reI> tag
search in the TAO_structure for link_name
if (a link structure is found with

the same link_name) then
begin

Chapter 11

get link_type and link_TAO_name
if (link_type=structural) then

insert <a href .. > link in template
to link with link_TAO_name

elsif (link_type=spatial) then
/* insert template of link_TAO_name */

call interpreter (link_TAO_name)
end /* if */

end /* else */
end /* while */
end /* procedure */

3. FORMAL SPECIFICATION· THE
GRAMMATICAL APPROACH

Formal methods have been proposed as a means for software system
designers to assure that a system's requirements accurately reflect the users'
requirements and that an implementation is an accurate realization of the
design. For these reasons, formal methods provide added reliability to a
system. Many researchers claim that formal methods also result in reduced
costs since much of the cost of software is a result of imprecision and
ambiguity in requirements analysis which necessitates increased testing and
maintenance [Saied96]. Formal methods allow a software design to be
mathematically modeled and analyzed. A notation for formal specification
of a system is provided which can be used to reason about a system in a
rigorous manner. In spite of the gains to be realized by adopting formal
methods, industrial adoption has been slow. One widely cited impediment to
the adaptation of formal methods is the lack of supporting tools.
Due to the complex nature of multimedia applications, they are prime

candidates for the application of formal methods. In order to best serve the
needs of developers of such applications, we have considered methods
specialized for multimedia applications and have settled on a grammatical
approach for modeling. Such an approach is well suited to model the
hierarchical structure and complex relations of the TAOs composing our

www.manaraa.com

{1. Systems: Specification ofMuLtimedia AppLications 195

applications. It is also possible to implement tools for the construction,
manipulation and analysis of grammatical structures, in this way
overcoming one of the most serious impediments to the adaptation of formal
methods. These observations are the basis for our selection of a grammatical
approach to formal specification of multimedia applications. Formal
specification stands as one of the foundations of our approach to the design
of multimedia applications, along with the TAO framework and prototyping
tools.
Much research has been conducted on multimedia systems and on the

interaction between multimedia objects and users [Botto96], however few
researchers have used a grammatical approach to specify such systems. One
who has is Wittenburg [Weitz94] who proposed a system based on a
relational grammar that allows the automatic presentation of multimedia
objects. Certain characteristics distinguish his system from ours; in
particular, Wittenburg's system does not permit interaction between media
objects. The user decides the relations between the media objects that are
resolved in a phase of constraint solving. The grammar is used to find the
correct values for the physical attributes of the objects in a system in which
the user may list the relations to derive without giving the values that the
attributes must take. It is not clear, however, how much interaction the user
may specify. Finally, due to how it is used, the grammar is directly tied to
the parser to be used [Witte92]. This limits the generation of multimedia
presentations by the system to those that can be analyzed by the parser.
It is important to make the following observation, which also applies to

Wittenburg's relational grammars [Weitz94, Weitz96a, Weitz96b], on the
relation between visual grammars and parsers. Today many
multidimensional grammars having high generative powers have been
produced. This is in contrast to the limited recognizing powers of parsers
that are penalized by the high computational complexity of
multidimensional grammars. While some researchers see this complexity as
a limit on the practical utility of multidimensional grammars, we believe that
the parser can be avoided by, for example, using syntax-directed editors.
General-purpose editor/browsers offer little assistance to the user, while
editor/browsers that identify errors and give users the possibility to redo the
errors once they have been identified are more useful. Such editors are
syntax-directed and can be used to avoid the complexity of the parser
[Costa97b].

3.1 Multidimensional Grammar

After reviewing the existing grammars, we have excluded the more strict
context-free grammar models, like Positional Context-Free and Constraint

www.manaraa.com

196 Chapter 11

Multiset Context-Free, because of their limited generative power. In fact,
these grammars cannot generate graph languages. Multimedia applications
require the handling of complex structures during the parsing phase,
therefore a more powerful generative grammar model has to be chosen.
However, it is also necessary to avoid increasing the complexity of the
parser.
Concerning the complexity.of the grammars, a limit on the complexity of

parsers of graph grammars has been given by Brandenburg [Brand88] for
graph grammars in the confluence property. For multidimensional
languages, some grammatical derivations that may appear context-free are
not since changing the rewrite order of the nonterminals in the derivation
can change the final result [Ferru96]. Guaranteeing that the result of all
grammatical derivations in a language is independent of the rewrite order of
the nonterminals guarantees, by definition, the confluence [Brand88]. This
property is indispensable for efficient parsers since any order of application
of the rules must result in the recognition of the sentences belonging to the
language. If the language is not confluent, any parser must evaluate multiple
orderings in order to recognize a sentence.
Then we have turned our attention to multidimensional grammars such as

Context-Free Positional Grammars [Costa95b], Constraint Multiset
Grammars [Marri96], and Picture Layout Grammars [Golin90]. These
grammars use attributes as an essential part of the parsing algorithm since
the values of the attributes are crucial for syntactic analysis.
On the other hand, the role of the attributes in the formal structure of a

multimedia presentation is primarily to attach semantic knowledge to the
grammar model. The knowledge we need to attach may contain information
dependent on the application domain as well as information about semantic
actions to be triggered. Such knowledge requires a variety of attributes
which should also contribute to semantic analysis. This motivation leads us
to SR Grammars [Ferru96].

3.2 Symbol Relation Grammars

A common grammatical approach for the description of
multidimensional languages uses rewriting mechanisms to generate
sentences in the language (e.g. Constraint Multiset Grammars [Marri96],
and Picture Layout Grammars [Golin90]). The SR Grammar is one of these
grammars. In the SR Grammar formalism [Ferru96], a sentence is viewed as
a set of symbol occurrence (s-items) and a set of relation items over symbol
occurrences (r-items).
The main feature of SR grammars is that the derivation of a sentence is

performed by rewriting both symbol occurrences and relation items by

www.manaraa.com

J J. Systems: Specification ofMultimedia Applications 197

means of simple context-free style rules. More precisely, during a derivation
step a symbol occurrence XO in a sentence SI is replaced by a sentence S2,
according to a rewriting rule of the form XO~S2, called an s-item
production (s-production). After XO has been rewritten, the replacement of
the set of r-items involving XO is performed through r-item rewriting rules
(r-productions) of the form r(XO,yJ)~R, where R is a set of r-items relating
yl to s-items in S2.

In [Ferru96] it has been shown how the notion of attribute context-free
grammars may be applied to SR Grammars to implement semantic actions in
the language and a boundary version of the SR grammar has been proposed.
The Boundary SR Grammar has the confluence property and thus a lower
computational complexity. An efficient parser has been given [Ferru96] for
confluent languages, which have the connection and limited degree
properties, where this last property means that the number of relations that
tie one object to another is limited.

4. A BOUNDARY SR GRAMMAR FOR THE TAO
HYPERGRAPHSTRUCTURE

In this section we describe a Boundary SR Grammar (BSRG) capable of
generating the hypergraph structure of the TAO. The grammar is
completely general since it does not identify a specific set of relations to be
used to construct the TAO. Rather, it permits the instantiation of an arbitrary
number of relations since the grammar is defined on base relation types. We
identify the following base relation types: spatial; temporal; annotation;
reference to the external environment; reference from the external
environment. This permits us to use the grammar in various ways, for
example, as a module which drives a syntax-directed editor with phases for
link creation, assignment of a name to a link, and assignment of a semantic
meaning to a link. The grammar is easily specialized for a group of relations
for a particular domain. This is possible due to the rewriting of the relations.
We exploit this mechanism by having relations represented by non­
terminals, which are rewritten with terminal relations only when both
terminal nodes involved are reached.

In the subsequent phase of semantic analysis it will be necessary to
consider the meaning of the relations, and therefore we introduce an
attributed form of the BSRG in which extra information is encapsulated in
the attributes attached to the relation.

www.manaraa.com

198 Chapter 11

4.1 A Boundary SR Grammar

The complete version of the BSRG which generates a language that is
the set of legal hypergraphs of a TAO is given in Appendix B. The most
important rules for the construction of a TAO are briefly described in the
following. In order to describe, in a sinthetic way, the productions of the
grammar, we will use the symbols z, x to represent, respectively, the
elements of the following sets:
ZE {icon, earcon, vicon, ticon, micon}
XE {icon, vicon, ticon, micon}
• the initial production either directly produces a terminal node or a

composite node and a non-terminal node connected by the attachment
relation. The only attachment relations derivable are between a multicon (i.e.
a composite node) and its children:
1: SO~ <{multicont, AI }{attach(multiconl, AI)}>
17: SO~ <{Xl} {0}> XE{icon, vicon, ticon, micon}
• it is possible to derive a reference link to and from the external

environment i.e.
18: SO~ <{Xl, EXT I }{reference(xl, EXT I)}>
where z E{icon, earcon, vicon, ticon, micon} and EXT represents the

external environment. Productions 2-16, 18-24, 58-67 describe the external
reference to the TAO.
• The annotation relations have as a parent node any base or composite

node, but must have as child node the composite node of a new TAO
annotating the preceding node, i.e.:
43: AO~ <{Xl, AI, SI}{rel (Xl, AI) annotation(x l

, SI)}>
See productions 43-47,51-57 and 64-67.
• The spatial and temporal relations are derived via the rei relation which

is rewritten when a terminal is involved. Productions 25-26, 29, 35-36, 39,
43-44,47,53-54,56-57 produce the rei relation; i.e:
29: AO~ <{Xl, AI}{rel (Xl, AI) reI (AI, Xl)}>
which can be rewritten by using the following rewriting rules:
R64: rei (xo, AO) ~ [25,26,27,28,29,43,44,45,46,47] {y(xo, Xl)}
R65: reI (Ao, xo) ~ [25,26,27,28,29,43,44,45,46,47] {y(xl, xo)}
where x E{icon, vicon, ticon, micon, multicon} and y E

{synchronization, location}
• For the earcon, rewritings with spatial relations are forbidden (see

productions 30-34, 48-52); i.e.:
34: A°~ <{earconI, AI}{synchronization (earcon I, AI) synchronization

(AI, earcon l)}>
R66: reI (xo, AO) ~ [30,31,32,33,34,48,49,50,51,52] (synchronization(xo,

earcon') }

www.manaraa.com

11. Systems: Specification ofMultimedia Applications 199

R67: rei (Ao, xO)
{synchronization(earcon I, xO) }

[30,31,32,33,34,48,49,50,51,52]

• the spatial, temporal and reference relations are derived at a high level
of derivation. These may be duplicated, rewritten and located in any point of
a TAO except when we wish to derive a bundled node. In the case of a
bundled node we use productions 40-41 :
40: AO~ <{B I

} {0}>
41: BO~ <{AI} {0}>
There are no rewriting rules for the relations after the application of the

above productions. As a consequence, the sentential forms of the language
which we obain do not have reference links, location links, or
synchronization links which involve nodes both external to and internal to
the bundle.
The sequence of derivations steps used to generate the TAO of example

1, is shown in Appendix A. In the example the nonterminal symbols of each
derivation step, which need to be rewritten later, are shown in bold. The
relations which involve these symbols and therefore have not yet been
rewritten, are also in bold. At each step of the derivation, next to the
=> symbol, we indicate the s-production and the r-production(s) which have
been involved in the derivation step.

4.2 Parsing

As stated in Section 3.1, the confluence property is important for
multidimensional languages since if the language satisfies this property an
efficient parser for the language can be produced. A Boundary SR grammar
must satisfy two constraints in order to be confluent - the graphs generated
by the language must be connected and each node must have a limited
degree (i.e. the number of links from each node must be less than or equal to
some constant).
The hypergraphs generated by the Boundary SR grammar for TAOs

given in Appendix B are connected since the hypergraph is uniquely given
by the derivation tree with root S, the start symbol. If we have two TAOs,
these TAOs may be connected by a reference link. This reference link is the
point of connectivity between the two TAOs.
The limited connectivity property is also satisfied, even if we are not able

to give a priori a limit. It is reasonable to assume (since it doesn't limit the
type of TAOs we wish to generate) that a node is linked only to its
neighbors. Further, there is a constant number of link types. Therefore, even
if a node is connected to its neighbors via all link types there is not a linear

www.manaraa.com

200 Chapter 11

degree of connectivity. This limitation drastically reduces the size of the
language, but it does not disallow the sentences (i.e. TAOs) that we are
interested in.

5. SEMANTIC EXTENSION OF TAO USING
ATTRIBUTE SR GRAMMMARS

Teleaction objects consist of a hypergraph representing the interface of
a multimedia application with an associated knowledge structure. We have
shown how the hypergraph structure can be generated by an SR grammar.
The knowledge structure is an active index and is created by using the IC
builder tool. It is possible to extend the SR grammar for TAOs to include the
associated knowledge as semantic actions associated with the grammar. An
extension of the SR grammar which does this was proposed in [Ferru94].
The extended SR grammar is an Attribute SR Grammar which associates a
set of inherited and/or synthesized attributes with the non-terminal symbols
of VN and with the symbols of the relations of VR' associating evaluation
rules with the s- and r-productions. This permits the use of different
knowledge in different contexts, using the context-sensitive generative
power of the derivations to pass the attributes.

6. ENVIRONMENTAL ADAPTABILITY

Since the grammatical model provides a variety of relations, the
knowledge will provide the correct routines for materialization/interpretation
of these relations. We can give the same names to different routines that
work with diverse media types and, by attribute passing, let the correct
routines reach the terminals. This approach allows compatibility with
diverse multimedia environments in which a relation may have many
meanings.
Knowledge is expressed as references to an area of memory of the

distributed ICs. The correct knowledge base will be loaded in this area of
memory. Since we separate the construction phase of the environment from
the construction phase of a TAO, multiple TAO systems may be constructed
in the same environment. Furthermore, diverse environments may be
supported by loading an environment-specific knowledge base. For this, it is
sufficient to use only inherited attributes [Ah086]. Given the limited nature
of their use, a dependence among the attributes of parents and children only
is assured, thus assuring the acyclic nature of the dependence graph and the

www.manaraa.com

11. Systems: Specification ofMultimedia Applications 201

efficiency of the calculations (a top down visit using the hypergaph
attachments is sufficient, or from the generative point of view, a top down
visit of the derivation tree).
The attribute scheme for a TAO is given in [Amdt97b].

TAOl

n

Reference ~

Synchronizatio--------~

~

a
jL
a a

Figure 4. Hypergraph structure with attached knowledge.

7. DISCUSSION

We have presented the basis for a principled approach to the production
of distributed multimedia applications. The unifying principle for our
approach is the Teleaction Object. TAOML, an extension of HTML has
been introduced to allow distributed multimedia applications to be

www.manaraa.com

202 Chapter 11

prototyped using standard web browsers as a front-end and the distributed
IC manager to manage the knowledge associated with the application. A
boundary SR grammar has been introduced to allow for the formal
specification of TAOs. The interpreter for TAOML as well as the distributed
IC manager and a graphical front-end for specifying TAOs have been
developed. In the future, we will develop a syntax-directed editor based on
the grammar. This editor will produce TAOML output via semantic actions.
This output will then be fed to the interpreter, providing a unified approach
to application development. We also plan to investigate the use of the formal
specification to prove properties of the application.

www.manaraa.com

11. Systems: Specification ofMultimedia Applications

APPENDIX A: DERIVATION STEPS OF KIOSK TAO

203

TAO 1:

SO

=>18 <{ vieon',

~58,RI56 <{ vieon l
,

{reference(vieon' ,

{referenee(vieon' ,

ext'} (rel(multieon2
, A2

)

attaeh(multieon', multieon2)

TAO 2:

SO

~3 <{multieon', A', EXT'} {attach(multieon l
, A') reference(EXT', multieon l)}>

~58.RI56 <{multieon', AI, ext'} {attach(multieon', AI)} {referenee(ext',

multieon')}>

~ 35,RI <{multieon', {multieon2, A2,

attach(multieon2, A3) attach(multieon',

referenee(ext', multieon')}>

~28,R64,R25 <{multieon!, {multieon2, {vieon2 j, A3}, ext'} {rel(multieon2, vieon2)

attach(multieon2, A3) attaeh(multieon', vieon2) attaeh(multieon l , multieon2)

referenee(ext', multieon') }>

~40,R23 <{multieon l , {multieon2, {vieon2}, {B'}}, ext'} (rel(multieon2, vieon2)

attach(multieon2, BI) attaeh(multieon', vieon2) attaeh(multieonI, multieon2)

referenee(ext', multieon')}>

~41.R24 <{multieon', {multieon2, {vieon2}, {A4}}, ext'} (rel(multieon2, vieon2)

attach(multieon2, A4) attaeh(multieonI, vieon2) attaeh(multieon', multieon2)

referenee(extI, multieon1) }>

~36,Rl <{multieon l , {multieon2, {vieon2 j, {multieon3, AS, A6 }}, extI } (rel(As,

multieon3) attach(multieon3, A6) rel(multieon2, vieon2) attach(multieon2, AS)

attaeh(multieon2, multieon3) attaeh(multieon l , vieon2) attaeh(multieon l, multieon2)

referenee(ext', multieon')}>

~42,R61,RI9 <{multieon', {multieon2, {vieon2}, {multieon3, {A7}, A6}}, extl }

www.manaraa.com

204 Chapter 11

(rel(A7, multicon3) rei(A7, mUlticon3) attach(multicon'\ A6) rel(multicon2, vicon2)

attach(multicon2, A7) attach(multicon2, multicon3) attach(multicon', vicon2)

attach(multicon I, multicon2) reference(extl , multicon'»)>

=>25,R65,R63,R28 <{multicon', {multicon2, (vicon2), {multicon3, (micon l , AS),

A6)), ext') (rel(micon l , AS) location(micon', multicon3) rel(As, multicon3)

attach(multicon\ A6) rel(multicon2, vicon2) attach(multicon2, micon')

attach(multicon2, AS) attach(multicon2, multicon3) attach(multicon I, vicon2)

attach(multicon', multicon2) reference(ext l , multicon l»)>

=>33,R66,R67,R25 <{multicon l , {multicon2, (vicon2), {multicon3, {miconl ,

(em'con')}, A6)}, ext') (synchronization(micon l , earcon l) location(micon l ,

multicon3) synchronization(earcon1, multicon3) attach(multicon3, A6) rel(multicon2,

vicon2) attach(multicon2, miconl) attach(multicon2, earconl) attach(multicon2,

multicon3) attach(multicon1, vicon2) attach(multicon l , multicon2) reference(ext l ,

multicon l »)>

=>25,R28 <{multicon l , {multicon2, {vicon2 }, {multicon3, {miconl , (earcon1)},

{ticon', A9) }, extl) {rel(ticonl , A9) synchronization(micon l , earcon')

location(micon I, multicon3) synchronization(earcon', multicon3) attach(multicon3,

ticon') attach(multicon3, A9) rel(multicon2, vicon2) attach(multicon2, micon l)

attach(multicon2, earcon l) attach(multicon2, multicon·1) attach(multicon l , vicon2)

attach(multicon', multicon2) reference(ext l , multicon l»)>

=>25,R64,R28 <{multicon', {multicon2, (vicon2), {multicon3, {miconl ,

(earcon') }, {ticon', (ticon2, A10) }) }, ext') (rel(ticon2, A10) synchronization(ticon I,

ticon2) synchronization(micon l , earcon') location(micon l , multicon3)

synchronization(earcon', multicon3) attach(multicon\ ticon I) attach(multicon3,

ticon2) attach(multicon3, A10) rel(multicon2, vicon2) attach(multicon2, micon')

attach(multicon2, earcon') attach(multicon2, multicon.1) attach(multicon', vicon2)

attach(multicon', multicon2) reference(ext l , multicon'»)>

=>25,R64,R28 <{ multicon l , {multicon2, (vicon2), {multicon\ (micon l , (earcon l) },

{ticon', {ticon2, {• (ticonn-I , An-I+8)), ext'} (rel(ticonn-', Ano l+S) synchroniza-

www.manaraa.com

JJ. Systems: Specification ofMultimedia Applications 205

tion(ticon"-2, tieon"-I) synehronization(tieon2, tieon3) synehronization(tieonI,

tieon2) synehronization(mieon l , earcon l) loeation(mieon l , multicon3)

synehronization(eareon l , multicon3) attaeh(multieon3, tieonl) attaeh(multieon3,

tieon2) attaeh(multieon3, tieonn
-
2) attach(multieon3, An.1+8) rel(multieon2,

vieon2) attaeh(multieon2, miconI) attach(multieon2, eareonI) attaeh(multicon2,

multieon3) attach(multicon l , vicon2) attach(multicon I, multicon2) referenee(extl ,

multicon 1)}>

~28,R64,R26<{multieon l , {multicon2, {vieon2}, {multicon3, {miconl , {eareonl }},

{tieon I, {tieon2, {..... {ticonn
-
I
, ticonn

} }, ext I } {rel(tieonn
-
I
, ticonn

) synchroniza-

tion(tieon"-2, ticonn
-
I
) synchronization(ticon2, tieon3) synehronization(ticonl ,

tieon2) synehronization(mieon l , eareon l) loeation(miconl , multicon3)

synehronization(eareon I , multieon3) attaeh(multieono, tieon I) attaeh(multieon3,

tieon2) attaeh(multieon3, ticonn
-
2) attaeh(multieono, tieonn

-
I
) attaeh(multieon3,

tieon") rel(multicon2, vieon2) attaeh(multieon2, micon ') attaeh(multicon
2, earconl)

attaeh(multieon2, multieon3) attaeh(multicon I, vieon2) attaeh(multieonI, multicon2)

reference(ext l , multieon l)}>

APPENDIX B: THE BOUNDARY SYMBOL RELATION
GRAMMAR FOR THE TAO

The BSRG G for the TAO is defined as follow. G= (VN, VT, VR, S,
P, R) where S is the start symbol, the set of nonterminals is VN = IS, A, B,
EXT}, the set of terminals is VT = {icon, vicon, earcon, ticon, micon,
multicon, ext} and the set of relations is VR = {rei, attach, annotation,
synchronization, location, reference}. The terminal ext represent the icons
that have an external reference to or from them.

Notation: in order to avoid duplication of productions which differ by
just one terminal symbol, we introduce the symbols x, Z, t , Y to represent,
respectively, the symbols of the following sets:

xE{icon, vicon, ticon, micon}
ZE {icon, earcon, vicon, ticon, micon}
t E{icon, earcon, vicon, ticon, micon, multicon}
yE{synchronization, location}
P:

www.manaraa.com

206 Chapter 11

1: SO -t < {multicon I, A I}(attach(multicon I, A I) }>
2: SO -t <(multicon I, AI, EXT'}{attach(multicon\ A')

reference(multicon I, EXTI)} >
3: SO -t <(multicon l, AI, EXTI}{attach(multicon l, AI) reference(EXTI,

multicon') }>
4: SO -t <(multicon l, A', EXT1}{attach(multicon l, AI)

reference(multicon l, EXTI)
reference(EXTI, multicon ')}>
5: SO -t <(multicon l, AI, ext'}{attach(multicon ' , A') reference(A

l
,

ext') }>
6: SO -t <{multicon l, AI, EXT l

, ext' }(attach(multicon', AI)
reference(multicon l, EXT1) reference(AI, ext')}>
7: SO -t <(multicon l, AI, EXT1, ext'}{attach(multicon l , AI)

reference(EXT', multicon l) reference(AI, exe)}>
8: SO -t <{multicon l, AI, EXT', ext' }(attach(multicon', AI)

reference(multicon I, EXT I
)

reference(EXTt, multicon1) reference(A1, ext))}>
9: S°-t <(multicont, AI, Sl}{attach(multicon l

, AI) annotation(multicon l,
Sl) }>
10: SO -t <(multicon l

, AI, SI, EXT', ext'}{attach(multiconI, AI)
annotation(multicon', Sl)

reference(multicon I, EXTI)}>
II: SO -t <(multicon', AI, Sl, EXT' , ext'}{attach(multicon

l, AI)
annotation(multicon I, SI)

reference(EXT1, multicon1)}>
12: SO -t <(multiconl, AI, SI, EXT', extl}{attach(multiconl, AI)

annotation(multicon1, SI)
reference(multicon I, EXTI) reference(EXT', multicon I)}>

13: SO -t <(multicon', AI, Sl, ext'}{attach(multicon ', AI)
annotation(multicon l , Sl) reference(A1, exe)}>

14: SO -t <(multicon', AI, S', EXT', ext'}{attach(multicon', AI)
annotation(multicon ' , Sl)

reference(multicon l: EXTI) reference(AI, ext')}>
15: SO -t <{multicon', AI, S', EXT', ext' }{attach(multiconI, A')

annotation(multicon1, Sl)
reference(EXTI, multiconl) reference(AI, exe)}>

16: SO -t <(multicon', AI, Sl, EXT', ext'}{attach(multiconl, AI)
annotation(multicon I, Sl)

reference(multicon I, EXTI) reference(EXT', multiconl) reference(AI,
ext') }>

17: SO -t < {x I} {0}> X E {icon, vicon, ticon, micon}
18: SO -t <{Xl, EXT l }(reference(x', EXTI)}>

www.manaraa.com

11. Systems: Specification ofMultimedia Applications 207

19: SO~ <{EXTI, Xl }{reference(EXT I
, Xl)}>

20: SO~ <{Xl, EXTI}{reference(EXTI, Xl) reference(EXTI, Xl)}>
21 : SO~ < {X I, S I}{ annotation(xI, S I) }>
22: SO~ <{Xl, Sl, EXT I

} {annotation(x l, Sl) reference(x l, EXTI)}>
23: SO~ <{Xl, Sl, EXT I }{annotation(xl, Sl) reference(EXT I

, Xl)}>
24: SO ~ < {xI, S1, EXTI}{ annotation(x I, S I) reference(x I, EXTI)

reference(EXTI, XI) }>
25: AO~ <{Xl, AI }{rel (Xl, AI)}>
26: AO~ <{Xl, AI }{rel (AI, Xl)}>
27: AO~ <{Xl, AI }{0}>
28: AO~ <{Xl} {0}>
29: AO~ <{Xl, AI }{rel (Xl, AI) rei (AI, Xl)}>
30: AO~ <{earcon l

, A1}{synchronization (earcon l
, AI)}>

31: AO~ <{earcon l
, AI} {synchronization (AI, earcon l)}>

32: AO~ <{ earconl, Al }{0}>
33: A°~ < {earconI} {0}>
34: AO ~ <{earcon l, AI}{synchronization (earcon', AI) synchronization

(AI, earcon l)}>
35: AO ~ <{muiticon l, AI, A2}{rel(multicon l, AI) attach(muiticonl,

A2)}>
36: AO ~ <{muiticon l, AI, A2}{rel(A I

, multicon l
) attach(multicon ' ,

A2)}>
37: AO~ <{muiticon', AI, A2}{attach(multicon l, A2)}>
38: AO~ <{multicon l, A2}{attach(multiconl, A2)}>
39: AO ~ <{multicon l, AI, A2}{rel(multi~on', AI) rel(AI, multicon l)

attach(multicon l, A2)}>

40: AO~ <{B I
} {0}>

41: BO ~ <{AI} {0}> /*The productions 40 and 41 generate the bundled
nodes. In fact, there are not existing r-productions for the relation rel, which
include these productions. As a consequence, the sentential forms of the
language which we obain do not have reference links, location links, or
synchronization links which involve nodes both external to and internal to
the bundle. We have r-productions only for the attachment links.*/
42: AO~ <{AI} {0}>

43: AO~ <{Xl, AI, Sl }{rel (Xl, AI) annotation(x l, Sl)}>
44: AO~ <{Xl, AI, Sl }{rel (AI, Xl) annotation(xl, Sl)}>
45: AO~ <{Xl, AI, Sl}{annotation(x l

, Sl)}>
46: AO~ <{Xl, Sl }(annotation(xl, Sl)}>
47: AO~ <{Xl, AI, Sl }{rel (Xl, AI) rei (AI, Xl) annotation(x l, Sl)}>

www.manaraa.com

208 Chapter JJ

48: AO ~ <{earcon l , AI, 5 1}{synchronization (earcon1, AI)
annotation(earcon ' , 51)}>
49: AO ~ <{earcon l, AI, 5 1}{synchronization (AI, earcon l)
annotation(earcon1, 51)}>
50: AO~ <{ earcon1, AI, 51} {annotation(earcon1, 51)}>
51: AO ~ <{earcon l, 51 }(annotation(earconl, 51)}>
52: AO ~ <{earcon l , AI, 5 1}{synchronization (earcon l, AI) synchronization
(AI, earcon l)
annotation(earcon\ 51)}>

53: AO ~ <{multicon1, AI, A2, Sl}{rel(multicon l, AI) attach(multicon l, A2)
annotation(multiconI, S I)}>
54: AO ~ <{multicon l, AI, A2, SI}{rel(AI, multicon l) attach(multicon l , A2)
annotation(multiconl, Sl)}>
55: AO ~ <{multicon 1

, AI, A2
, Sl }(attach(multicon1

, A2
)

annotation(multicon l, Sl)}>
56: AO ~ <{multicon1, A2, 5 1}{rel(multicon l, A2) annotation(multicon l ,
SI) }>
57: AO ~ <{multicon l, AI, A2, SI}{rel(multicon l , AI) rel(AI, multicon l)
attach(multicon I, A2)
annotation(multicon l, SI)}>

58: EXTJ~ <{ext'} {0}>
59: EXTJ~ <{EXTI} {0}>

60: S()~ <{earcon l
} {0}>

61: So~ <{ earcon l , EXTl } {reference(earconl, EXT1)}>
62: SO~ <{earcon I, EXTI}{reference(EXTI, earcon I) }>
63: So~ <{earcon l, EXTI}{reference(earcon l

, EXTI) reference(EXTI,
earcon I)}>
64: So~ <{ earcon l

, SI }(annotation(earcon ' , SI)}>
65: So~ <{earcon l

, SI, EXTI}{annotation(earcon', SI) reference(earcon l,
EXT')}>
66: sO~ <{earcon l, Sl, EXTI}{annotation(earcon l, Sl) reference(EXTI,
earcon I)}>
67: So~ <{earcon l

, SI, EXTI}{annotation(earcon l
, SI) reference(earcon l

,

EXT1) reference(EXTI, earcon l)}>

R:
RI: attach(multicono, AO) ~ [35,36,37,39,53,54,55,57] {attach(multicono,
AI) attach(multicono, multicon l

)}

R2: attach(multicono, A0) ~ [35,36,37,39,53,54,55,57] {attach(multicono,

www.manaraa.com

11. Systems: Specification ofMultimedia Applications

AI) attach(multicono, multicon l
)

y(multicon', multicono)}
R3: attach(multicono, AO) ~ [35,36,37,39,53,54,55,57]
AI) attach(multicono, multicon l

)

y(multicono, multicon l
)}

R4: attach(multicono, AO) ~ [35,36,37,39,53,54,55,57]
AI) attach(multicono, multicon l

)

y(multicon1, multicon0) y(multicon0, multicon I) }

209

{attach(multicono,

(attach(multicono,

R5: attach(multicono, AO) ~ [35,36,37,39,53,54,55,57] {attach(multicono,
AI) attach(multicono, multicon l

)

rel(multicono, AI)}
R6: attach(multicono, AO) ~ [35,36,37,39,53,54,55,57] (attach(multicono,
AI) attach(multicon0

, multicon1
)

rel(AI, multicono)}
R7: attach(multicono, AO) ~ [35,36,37,39,5354,55,57] {attach(multicono,

AI) attach(multicono, multicon ') rel(multicono, AI) rel(AI, multicono)}
R8: attach(multicono, AO) ~ [35,36,37,39,53,54,55,57]

{attach(multicono, AI) attach(multicono, multicon l
) y(multicono,

multicon ') rel(multicono, AI)}

R9: attach(multicono, AO) ~ [35,36,37,39,53,54,55,57]
(attach(multicono, A I) attach(multicono, multicon I)

y(multicono, multicon1) rel(AI, multicono)}
RIO: attach(multicono, A0) ~ [35,36,37,39,53,54,55,57]

(attach(multicono, AI) attach(multicono, multicon ') y(multicono,
multicon ') rel(multicono, AI) rel(A

1
, multicono)}

Rll: attach(multicono, AO) ~ [35,36,37,39,53,54,55,57]
{attach(multicono, AI) attach(multicono, multicon ')

y(multicon l
, multicono) rel(multicono, AI)}

R 12: attach(multicono, AO) ~ [35,36,37,39,53,54,55,57]
(attach(multicono, AI) attach(multicono, multicon ')

y(multicon I, multicono) rel(AI, multicono)}
R13: attach(multicono, AO) ~ [35,36,37,39,53,54,55,57]

{attach(multicono, AI) attach(multicono, multicon l
)

y(multicon l
, multicono) rel(multicono, AI) rel(AI, multicono)}

R 14: attach(multicono, A0) ~ [35,36,37,39,53,54,55,57]
(attach(multicono, AI) attach(multicono, multicon l

)

y(multicon l
, multicono) y(multicono, multicon l

) rel(multicono, AI)}
R15: attach(multicono, AO) ~ [35,36,37,39,53,54,55,57]

(attach(multicon0, AI) attach(multicon0, multicon I) y(multicon I,
multicono) y(multicono, multicon I) rel(AI, multicono)}

www.manaraa.com

210 Chapter 11

R 16: attach(multicono, AO) -7 [35,36,37,39,53,54,55,57]
(attach(multicono, AI) attach(multicono, multicon') y(multicon ' ,
multicono) y(multicono, multicon l

) rel(multicono, AI)
rel(A I, multicono)}

RI7: attach(multicono, AO) -7 [38,56] (attach(multicono, multicon l
)}

R18: attach(multicono, AO) -7 [38,56] (attach(multicono, multicon ')
y(multicono, multicon l

)}

R19: attach(multicono, AO) -7 [42] (attach(multicono, AI)}
R20: attach(multicono, A0) -7 [42] {attach(multicono, AI) rel(multicono,

AI)}
R21: attach(multicono, AO) -7 [42] (attach(multicono, AI) rel(AI,

multicono) }
R22: attach(multicono, AO) -7 [42] (attach(multicono, AI) rel(multicono,

AI) rel(AI, multicono)}
R23: attach(multicono, AO) -7 [40] {attach(multicono, BI)}
R24: attach(multicono, BO) -7 [41] (attach(multicono, AI)}
R25: attach(multicono, AO) -7 [28,33,46,51] (attach(multicono, Zl)}
R26: attach(multicono, A0) -7 [28,46] (attach(multicono, xI)}

y(multicono, Xl)}
R27: attach(multicono, AO) -7 [33,51] (attach(multicono, earcon1)}

synchronization(multicono, earcon I) }
R28: attach(multicono, AO) -7

[25,26,27,29,30,31,32,34,43,44,45,47,48,48,50,52] (attach(multicono, z')
attach(multicono, A I)}
R29: attach(multicono, AO) -7

[25,26,27,29,30,31,32,34,43,44,45,47,48,48,50,52] (attach(multicono, Zl)
attach(multicono, AI) rel(multicono, AI)}
R30: attach(multicono, A0)

-7 [25,26,27,29,30,31,32,34,43,44,45,47,48,48,50,52] (attach(multicono, Zl)
attach(multicono, AI) rel(A1, multicono)}
R31: attach(multicono, AO) -7

[25,26,27,29,30,31,32,34,43,44,45,47,48,48,50,52] {attach(multicono, Zl)
attach(multicono, AI) rel(multicono, AI) rel(A 1

, multicono)}
R32: attach(multicono, AO) -7 [25,26,27,29,43,44,45,47]

{attach(multicono, Xl) attach(multicono, AI) y(multicono, Xl)}
R33: attach(multicono, AO) -7 [25,26,27,29,43,44,45,47]

{attach(multicono, Xl) attach(multicono, AI)
y(multicono, X I) rel(multicono, A I)}
R34: attach(multicono, AO) -7 [25,26,27,29,43,44,45,47]

{attach(multicono, Xl) attach(multicono, AI)
y(multicono, Xl) rel(A ' , multicono)}

www.manaraa.com

11. Systems: Specification ofMultimedia Applications 211

R35: attach(multicono, AO) ~ [25,26,27,29,43,44,45,47]
{attach(multicono, xI) attach(multicono, A I)
y(multicono, xI) rel(multicono, A I) rel(A I, multicono)}

R36: attach(multicono, AO) ~ [25,26,27,29,43,44,45,47] {attach(multicono,
Xl) attach(multicono, AI)
y(x I, multicono)}
R37: attach(multicono, AO) ~ [25,26,27,29,43,44,45,47]

{attach(multicono, Xl) attach(multicono, AI)
y(x I, multicono) rel(multicono, AI)}
R38: attach(multicono, AO) ~ [25,26,27,29,43,44,45,47]

{attach(multicono, Xl) attach(multicono, AI)
y(x I, multicono) rel(AI, multicono)}
R39: attach(multicono, AO) ~ [25,26,27,29,43,44,45,47]

{attach(multicono, Xl) attach(multicono, AI)
y(x I, multicono) rel(multicono, AI) rel(A1, multicono)}

R40: attach(multicono, A0) ~ [25,26,27,29,43,44,45,47] {attach(multicono,
Xl) attach(multicono, AI)
y(x I, multicono) y(multicono, Xl)}
R41: attach(multicono, AO) ~ [25,26,27,29,43,44,45,47]

{attach(multicono, Xl) attach(multicono, AI)
y(x I, multicono) y(multicono, Xl) rel(multicono, AI)}
R42: attach(multicono, AO) ~ [25,26,27,29,43,44,45,47]

{attach(multicono, XI) attach(multicono, AI)
y(x l

, multicono) y(multicono, Xl) rel(A I, multicono)}
R43: attach(multicono, AO) ~ [25,26,27,29,43,44,45,47]

{attach(multicono, Xl) attach(multicono, AI)
y(x l

, multicono) y(multicono, Xl) rel(multicono, AI) rel(A', multicono)}
R44: attach(multicono, A0) ~ [30,31,32,34,48,49,50,52]

{attach(multicono, earcon l
) attach(multicono, AI)}

R45: attach(multicono, AO) ~ [30,31,32,34,48,49,50,52]
(attach(multicono, earcon1) attach(multicono, A I)

rel(multicono, AI)}
R46: attach(multicono, AO) ~ [30,31,32,34,48,49,50,52]

{attach(multicono, earcon l
) attach(multicono, AI)

rel(A1, multicono)}
R47: attach(multicono, AO) ~ [30,31,32,34,48,49,50,52]

{attach(multicono, earcon l
) attach(multicono, AI)

rel(multicono, AI) rel(A I
, multicono)}

www.manaraa.com

212 Chapter 11

R48: attach(multicono, AO) ~ [30,31,32,34,48,49,50,52]
{attach(multicono, earcon I) attach(multicono, AI)
synchronization(multicono, earconI)}
R49: attach(multicono, AO) ~ [30,31,32,34,48,49,50,52]

{attach(multicono, earcon l
) attach(multicono, AI)

synchronization(multicono, earcon l
) rel(multicono, AI)}

R50: attach(multicono, AO) ~ [30,31,32,34,48,49,50,52] {attach(multicono,
earcon l

) attach(multicono, AI)
synchronization(multicono, earcon I) rel(A I, multicono)}

R51: attach(multicono, A0) ~ [30,31,32,34,48,49,50,52] {attach(multicono,
earcon l

) attach(multicono, AI)
synchronization(multicono, earcon1) rel(multicono, AI) rel(A1, multicono)}

R52: attach(multicono, A0) ~ [30,31,32,34,48,49,50,52] {attach(multicono,
earcon I) attach(multicono, A I)
synchronization(earcon I, multicono)}

R53: attach(multicono, A0) ~ [30,31,32,34,48,49,50,52] {attach(multicono,
earcon l

) attach(multicono, AI)
synchronization(earconI, multicono) rel(multicono, AI)}

R54: attach(multicono, A0) ~ [30,31,32,34,48,49,50,52] {attach(multicono,
earcon l

) attach(multicono, AI)
synchronization(earconI, multicono) rel(A I, multicono)}

R55: attach(multicono, A0) ~ [30,31,32,34,48,49,50,52] {attach(multicono,
earcon l

) attach(multicono, AI)
synchronization(earconI, multicono) rel(multicono, AI) rel(AI, multicono)}

R56: attach(multicono, A0) ~ [30,31,32,34,48,49,50,52] {attach(multicono,
earcon l

) attach(multicono, AI)
synchronization(multicono, earcon I) synchronization(earcon1, multicono) }

R57: attach(multicono, A0) ~ [30,31,32,34,48,49,50,52] {attach(multicono,
earcon l

) attach(multicono, AI)
synchronization(multicono, earcon I) synchronization(earcon I, multicono)
rel(multicono, AI)}

R58: attach(multicono, A0) ~ [30,31,32,34,48,49,50,52] {attach(multicono,
em"Con l

) attach(multicono, AI)
synchronization(multicono, earcon l

) synchronization(earcon l
, multicono)

rel(A 1
, multicono)}

R59: attach(multicono, A0) ~ [30,31,32,34,48,49,50,52] {attach(multicono,
earcon l

) attach(multicono, AI)
synchronization(multicon0, earcon I) synchronization(earcon I, multicono)
rel(multicono, AI) rel(A 1

, multicono)}

www.manaraa.com

11. Systems: Specification ofMultimedia Applications

R60: rei (xo, AO) ~ [42] {rei (xo, AI) rei (xo, AI)}
R61: rei (Ao, xo) ~ [42] {rei (AI, xo) rei (AI, xo)}

213

R62: rei (xo, AO) ~

[25,26,27,29,30,31,32,34,35,36,37,39,42,43,44,45,47 ,48,49,50,52,53,54,55,
57]
{rei (xo,A')}

R63: rei (Ao, xo) ~

[25,26,27,29,30,31,32,34,35,36,37,39,42,43,44,45,47,48,49,50,52,53,54,55,
57]
{rei (AI, xo)}

R64: rei (xo, AO) ~ [25,26,27,28,29,43,44,45,46,47] {y(xo, Xl)}
R65: rei (Ao, xo) ~ [25,26,27,28,29,43,44,45,46,47] {y(x l, xo)}

R66: rei (xo, A0) ~ [30,31,32,33,34,48,49,50,51,52] {synchronization(xo,
earcon l

) }

R67: rei (Ao, xo) ~ [30,31,32,33,34,48,49,50,51,52]
{synchronization(earcon I, xO)}

R68: rei (xo, A0) ~ [35,36,37,38,39,53,54,55,56,57] {rei (xo, A2)}
R69: rei (Ao, xO) ~ [35,36,37,38,39,53,54,55,56,57] {rei (A2, xO)}

R70: reI (xo, AO) ~ [35,36,37,38,39,53,54,55,56,57] {y (xo, multicon l)}
R7l: rei (Ao, xo) ~ [35,36,37,38,39,53,54,55,56,57] {y (multicon l

, xO)}

R72: rei (xo, AO) ~ [43,44,45,46,47,53,54,55,56,57] {rei (xo, Sl)}
R73: rei (Ao, xO) ~ [43,44,45,46,47,53,54,55,56,57] {rei (S', xO)}

R74: synchronization (earcono, AO) ~

[25,26,27,28,29,30,31,32,33,34,43,44,45,46,47,48,49,50,51,52]
(synchronization(earcono, Zl)}

R75: synchronization (Ao, earcono) ~

[25,26,27,28,29,30,31,32,33,34,43,44,45,46,47,48,49,50,51,52]
{synchronization(zl, earcono)}

R76: synchronization (earcono, AO) ~

[25,26,27,29,30,31,32,34,35,36,37,39,42,43,44,45,47,48,49,50,52,53,
54,55,56,57] {synchronization(earcono, A I)}

R77: synchronization (Ao, earcono) ~

[25,26,27 ,29,30,31,32,34,35,36,37,39,42,43,44,45, 47,48,49,50,52,53,
54,55,56,57] {synchronization(AI, earcono)}

www.manaraa.com

214 Chapter JJ

R78: synchronization (earcono, AO) ~ [35,36,37,38,39,53,54,55,56,57]
{synchronization(earcono, A2) }
R79: synchronization (Ao, earcono) ~ [35,36,37,38,39,53,54,55,56,57]
{synchronization(A2

, earcono)}

R80: synchronization (earcono, AO) ~ [48,49,50,51,52,53,54,55,56,57]
{synchronization(earcono, S I)}
R81: synchronization (Ao, earcono) ~ [48,49,50,51,52,53,54,55,56,57]

{synchronization(S I, earcono)}

R82: annotation(multicono,
SI) ~ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, 16]{annotation(multicono,
multicon l

) }

R83: annotation(multicono, SI) ~ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicono, multicon l

)

y(multicono, multicon I)}
R84: annotation(multicono, SI) ~ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicono, multicon l

)

y(multicon l
, multicono)}

R85: annotation(multicono, SI) ~ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicono, multicon I)
y(multicono, multicon I) y(multicon I, multicono)}

R86: annotation(multicono, SI) ~ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicono, multicon I)
rel(multicono, AI)}

R87: annotation(multicono, S') ~ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicono, muIticon I)
y(multicono, multicon l

) rel(multicono, AI)}
R88: annotation(multicono, SI) ~ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicono, multicon l

)

y(multicon\ multicono) rel(multicono, AI)}
R89: annotation(multicono, S') ~ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
(annotation(multicono, multicon I)
y(multicono, multicon l

) y(multicon l
, multicono) rel(multicono, AI)}

R90: annotation(multicono, SI) ~ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
(annotation(multicono, multicon l

)

rel(A I, multicono)}
R91: annotation(multicono, Sl) ~ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
(annotation(multicono, multicon l

)

www.manaraa.com

JJ. Systems: Specification ofMultimedia Applications 215

y(multiconO, multicon l
) rel(AI, multicono)}

R92: annotation(multicono, sl) 4 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicono, multicon l

)

y(multicon l, multicono) rel(A1, multicono)}
R93: annotation(multicono, sl) 4 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicono, multicon l

)

y(multicono, multicon l) y(multicon l, multicono) rel(A1, multicono)}
R94: annotation(multicono, SI) 4 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicono, multicon l

)

rel(A I, multicono) rel(multicono, AI)}
R95: annotation(multicono, Sl) 4 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicono, multicon1)
y(multicono, multicon I) rel(AI, multicono) rel(multicono, AI)}

R96: annotation(multicono, SI) 4 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicono, multicon I)
y(multicon', multicono) rel(A1, multicono) rel(multicono, AI)}

R97: annotation(multicono, sl) 4 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicono, multicon l

)

y(multicono, multicon1) y(multicon1, multicono) rel(AI, multicono)
rel(multicono, AI)}

R98: annotation(zo, SI) 4 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(zo, multicon I)}
R99: annotation(multicono, SI) 4 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(zo, multicon I)
y(zo, multicon l)}
RIOO: annotation(zo, SI) 4 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

{annotation(zo, multicon I)
y(multicon I, zO) }

RIOI: annotation(zo, SI) 4 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(zo, multicon l)
y(zo, multicon') y(multicon', zO)}

R102: annotation(zo, s') 4 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
(annotation(zo, multicon l

) rel(zo, AI)}
R103: annotation(zo, Sl) 4 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
(annotation(zo, multicon I)
y(zo, multicon l

) rel(zo, AI)}
R104: annotation(zo, SI) 4 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
(annotation(zo, multicon l

)

y(multicon l, zO) rel(zo, AI)}
R105: annotation(zo, sl) 4 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,]5,16]
{annotation(zo, multicon I)

www.manaraa.com

216 Chapter 11

R I06: annotation(zo, S ') ~ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(zo, multicon l) rel(A 1

, zO)}
R107: annotation(zo, Sl) ~ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(zo, multicon')
y(zo, multicon') rel(AI, zO)}

R108: annotation(zo, SI) ~ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(zo, multicon I)
y(multicon l

, zO) rel(AI, zO)}
R109: annotation(zo, Sf) ~ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(zo,multicon I)
y(zo, multicon l

) y(multicon l
, zO) rel(A I

, zO)}

RIIO: annotation(zo, Sf) ~ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(zo, multicon l

) rel(AI, zO)
rel(zo, AI)}
RIll: annotation(zo, SI) ~ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

{annotation(zo, multicon')
y(zo, multicon l

) rel(AI, zO) rel(zo, AI)}
R112: annotation(zo, SI) ~ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

{annotation(zo, multicon')
y(multicon I, zO) rel(A I, zO) rel(zo, A I)}
R113: annotation(zo, SI) ~ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

{annotation(zo, multicon I)
y(zo, multicon l

) y(multicon', zO) rel(A I, zO) rel(zo, AI)}
R114: annotation(multicono, SI) ~ [17,18,19,20,21,22,23,24]

{annotation(multicono, x I)}
R115: annotation(multicono, SI) ~ [17,18,19,20,21,22,23,24]

{annotation(multicono, Xl) y(multicono, Xl)}
R116: annotation(multicono, SI) ~ [17,18,19,20,21,22,23,24]

{annotation(multicono, Xl) y(x l, multicono)}
R117: annotation(multicono, SI) ~ [17,18,19,20,21,22,23,24]

{annotation(multicono, Xl) y(x l, multicono)
y(multicono, Xl)}
R 118: annotation(multicono, S I) ~ [60,61,62,63,64,65,66,67]

(annotation(multicono, XI)}
RlI9: annotation(multicono, SI) ~ [60,61,62,63,64,65,66,67]

{annotation(multicono, XI)
synchronization(multicono, earcon l

)}

R120: annotation(multicono, SI) ~ [60,61,62,63,64,65,66,67]
{annotation(multicono, x')

www.manaraa.com

II. Systems: Specification ofMultimedia Applications 217

synchronization(earcon I, multicono)}
R 121: annotation(multicono, S I) 4 (60,6 I ,62,63,64,65,66,67]

{annotation(multicono, xI)
synchronization(earcon I, multicon0) synchronization(multicono,

eat"Con I)}
R122: annotation(zo, Sl) 4 (17,18,19,20,21,22,23,24] {annotation(zo,

Xl) }
R123: annotation(zo, SI) 4 (17,18,19,20,21,22,23,24] {annotation(zo, Xl)

y(x I, zO)}
R124: annotation(zo, SI) 4 (17,18,19,20,21,22,23,24] {annotation(zo, Xl)

y(zo, XI)}
R125: annotation(zo, s') 4 (17,18,19,20,21,22,23,24] {annotation(zo, Xl)

y(x l, zo) y(zo, Xl)}
R126: annotation(zo, SI) 4 (60,61,62,63,64,65,66,67] {annotation(zo,

earcon l
) }

R127: annotation(zo, SI) 4 (60,61,62,63,64,65,66,67] {annotation(zo,
earcon l

) synchronization(earcon l, zO)}
R128: annotation(zo, SI) 4 (60,61,62,63,64,65,66,67] {annotation(zo,
earcon I) synchronization(zO, earcon I) }
R129: annotation(zo, S I) 4 (60,6 I ,62,63,64,65,66,67] {annotation(zo,
earcon ') synchronization(earcon I, zO) synchronization(zo, earcon I)}

R130: reference(ext, A0) 4 (40] {reference(B I, ext)}
R131: reference(Bo, ext) 4 (41] {reference(AI, ext)}

R132: reference(ext, AO) 4

(25,26,27,29,30,31,32,34,35,36,37,39,42,43,44,45,47,48,49,50,52,53,54,55,
57]
{reference(ext, A I) }

R133: reference(ext, AO) 4 (42] {reference(ext, AI) reference(ext, AI)}
R134: reference(ext, AO) 4

(25,26,27,28,29,30,31,32,33,34,43,44,45,46,47,48,49,50,51,52]
{reference(zl, ext)}

R135: reference(ext, AO) 4

(25,26,27 ,28,29,30,31,32,33,34,43,44,45,46,47,48,49,50,51,52]
(reference(ext, Zl)}

R136: reference(ext, AO) 4

(25,26,27,29,30,31 ,32,34,43,44,45,47,48,49,50,52] {reference(ext, AI)
reference(z', ext)}

R137: reference(ext, A0) 4

[25,26,27,29,30,31,32,34,43,44,45,47,48,49,50,52] (reference(ext, AI)

www.manaraa.com

218

reference(ext, z I) }

Chapter 11

R138: reference(ext, AO) ~ [35,36,37,38,39,53,54,55,56,57]
{reference(multicon', ext)}
R 139: reference(ext, AO) ~ [35,36,37,38,39,53,54,55,56,57]

{reference(ext, multicon I) }
R140: reference(ext, AO) ~ [35,36,37,39,53,54,55,57] {reference(ext,

AI) reference(multicon l, ext)}
R 141: reference(ext, AO) ~ [35,36,37,39,53,54,55,57] {reference(ext,

AI) reference(ext, multicon 1)}
R142: reference(ext, AO) ~ [35,36,37,38,39,53,54,55,56,57]

{reference(ext, A2) reference(multicon', ext)}
R143: reference(ext, AO) ~ [35,36,37,38,39,53,54,55,56,57]

{reference(ext, A2) reference(ext, multicon I) }
R144: reference(ext, AO) ~ [35,36,37,38,39,53,54,55,56,57]

{reference(ext, A2) }
R145: reference(ext, AO) ~ [35,36,37,39,53,54,55,56,57] {reference(ext,

AI) reference(ext, A2)}
R146: reference(Ao, ext) ~ [25,26,27,28,29,30,31,32,33,34]

{reference(zl, ext)}
R147: reference(Ao, ext) ~ [42] {reference(A' , ext) reference(A

I, ext)}
R148: reference(Ao, ext) ~

[25,26,27 ,29,30,31,32,34,35,36,37,39,42,43,44,45,47,48,49,50,52,53,54,55,
57]

{reference(AI, ext)}
R149: reference(Ao, ext) ~

[25,26,27 ,29,30,31,32,34,43,44,45,47,48,49,50,52] {reference(A' , ext)
reference(z', ext)}
R 150: reference(Ao, ext) ~ [35,36,37,38,39,53,54,55,56,57]

{reference(multicon I, ext)}
R 151: reference(A0, ext) ~ [35,36,37,38,39,53,54,55,56,57]

{reference(A2, ext)}
R 152: reference(Ao, ext) ~ [35,36,37,38,39,53,54,55,56,57]

{reference(multiconI, ext), reference(A2, ext)}
R 153: reference(Ao, ext) ~ [35,36,37,39,53,54,55,57]

{reference(multicon I, ext) reference(A1, ext)}
R 154: reference(Ao, ext) ~ [35,36,37,39,53,54,55,57]

{reference(multicon' , ext) reference(A
1
, ext)

reference(A2, ext)}
R 155: reference(Ao, ext) ~ [35,36,37,39,53,54,55,57] {reference(AI,

ext) reference(A2, ext)}

www.manaraa.com

21911. Systems: Specification ofMultimedia Applications

R 156: reference(tO, EXTo) ~ [58] {reference(tO, ext
l
)}

E {multicon, z}
R 157: reference(tO, EXro) ~ [59] {reference(tO, EXT')}
R 158: reference(tO, EXro) ~ [59] (reference(tO, EXT') reference(tO,

EXT')}
R159: reference(EXro, to) ~ [58] {reference(ext ' , to)}
R 160: reference(EXro, to) ~ [59] {reference(EXT1, to)}
R 161: reference(EXro, to) ~ [59] {reference(EXT', to) reference(EXT1,

to) }

APPENDIX C: THE ATTRIBUTED BOUNDARY
SYMBOL RELATION GRAMMAR FOR THE TAO

Given the grammar of Appendix B we will add an inherited attribute x.K to
each x terminal in VT and nonterminal in VN to represent the knowledge
associated with each node of the hypergraph; an attribute x.name to each
nonterminal in VN and synchronization and location relation in YR. The
inherited attribute represents a reference to the file that will contain the
nonterminal or the relation descriptions respectively. We also add the
following sets of semantic rules to each of the productions in P.
For production 1 to 8:
multicon'.K := load(system knowledge)
A'.K := load(system knowledge) u SO.K (this semantic rule is not valid

for production I)
multicon'.name := load(name)
For production 17 to 20:
z'.K := load(system knowledge) u load(private knowledge)
z'.nameo := load(name)
For production 25 to 34:
z'.K := load(private knowledge) u AO.K
A I.K := Ao.K (this semantic rule is not valid for production 28 and 33)

For production 35 to 39:
multicon'.K:= load(environment knowledge) u AO.K
A '.K := AO.K (this semantic rule is not valid for production 39)
A2.K := load(environment knowledge) u AO.K
multiconl.nameo:= load(name)

For production 40:
B'.K :=Ao.K

For production 41 :

www.manaraa.com

220

For production 42:
A'.K:= AOX

For production 9 to 16:
multicon'.K:= load(system knowledge)
A/.K := load(system knowledge)
multiconl.nameo:= load(name)

Chapter 11

For production 21 to 24:
z/.K := load(system knowledge) u SO.K uload(private knowledge)
zl.nameO:= load(name)

For production 44 to 52:
z/.K := load(private knowledge) u AO.K
A/.K :=Ao.K
z'.K := load(name)
For production 53 to 57:
multicon/.K:= load(environment knowledge) u AO.K
A'.K:= AO.K
A2.K:= load(environment knowledge) u AO.K
multicon I.nameo:= load(name)
We will add the attribute synchronization(a',aJ).name and

location(ai,aj).name to the synchronization and location relations to specify
the instance that hold between ai and ai.
We will add the attribute reference(ext,aj).name and

reference(aj,ext).name to the reference relation to specify the name of the
external icon that will be involved in the relation together with ai .
We will add the attribute annotation(ext,aj).name to the annotation

relation to specify the name of the icon that will represent the root of the
TAO annotated to ai.
We also add the following sets of semantic rules to each production in R

that contains the respective r-item:

y(multicono, multiconl).name:= load(name)
y(multicon l

, multicono).name:= load(name)
y(muiticono, xl).name:= load(name)
y(x I, multicono).name:= load(name)
synchronization(multicono, earconl).name:= load(name)
synchronization(earcon I, multicono).name:= load(name)
y(xo, xl).name:= load(name)

www.manaraa.com

JJ. Systems: Specification ofMultimedia Applications

y(x l, xO).name:= load(name)
synchronization(xo, earconl).name:= load(name)
synchronization(earcon l, xO).name:= load(name)
synchronization(earcono, zl).name:= load(name)
synchronization(zl, earcono).name:= load(name)
reference(zl, ext).name:= load(name)
reference(ext, zl).name:= load(name)
reference(multicon I, ext).name:= load(name)
reference(ext, multiconl).name:= load(name)

· (l' ° 1 . I) 1 . IannotatIOn mu tlcon , mu hcon .name:= mu tlcon .name
· (l' ° I) IannotatIOn mu hcon ,z .name:= z .name
· (0 1. I) 1 . IannotatIOn z, mu tlcon .name:= mu tlcon .name

annotation (zo, zl).name:= zl.name

221

www.manaraa.com

Chapter 12

Exercises and Project Suggestions

EXERCISE 1:

USA Today on December 31, 1998 carried an interesting article, "Birth
of a New Order", talking about the year that world's lines of time and space
collapsed. The year is of course 1998. The most incisive paragraphs are
excerpted below:

The global, time-crunched market driven by electronic information
"forces things to get bigger and smaller at the same time," says Nicholas
Negroponte, author and technologist at the Massachusetts Institute of
Technology. "And that's so ironic, when things want to do both but not stay
in the middle. There will be an increasing absence of things that aren't
either very local or very global". Oil and cars aren't much suited to being
small and local. So they're moving to become gigantic and cross-border.

As for being small and local, that's where the Internet, or World Wide
Web, comes in -- and it works in two ways. It lets little companies be global,
so a start-up in a garage can put its goods or services on a Web site and sell
worldwide, competing against midsize or big companies, wiping out
disadvantages (such as distribution and scope) that once had to do with
distance. And since little companies can change direction faster than bigger
ones, they have an advantage in time. Big companies used to have time and
distance on their side. Increasingly, little ones do.

And so in 1998, we had the phenomenon of Amazon.com, which has
become such a symbol of small beating big that business people have turned
it into a verb: to be "amazoned".

www.manaraa.com

224 Chapter 12

In the context of the above, write a mini-essay to discuss what do you
envision multimedia software engineering will become, and how multimedia
software engineering might help the "little guys" compete against the "big
guys", or the other way around. The mini-essay should be between 1,500 and
2,000 words, with no less than 3 and no more than 5 references. A
"template" is provided:

1st paragraph: My vision of multimedia software engineering in the year 200X.
2nd paragraph: My vision of a small company in the year 200X.
3rd paragraph: A scenario of the small company in action.
4th paragraph: Reasons why MSE can help the small company
compete against the big guys.
5th paragraph: More discussions.
3 to 5 references.

The mini-essay should be e-mailed to the instructor by the deadline.

EXERCISE 2:

The purpose of this exercise is to enable the students to gain familiarity
with the active index approach to active information system design. As
discussed in the book, the hypermedia model and the active index together
can be used to model active distributed multimedia information systems. In
this exercise we will first concentrate on the active index component.
Let us consider an adaptive distance learning system.
The distance learning materials are organized into a hypermedia

structure. A student user can browse through these multimedia documents
and follow the links to access related multimedia documents. As such, the
hypermedia structure is passive, waiting to be accessed by the user.
We can make the hypermedia structure active by associating index cells

with selected multimedia documents. The idea is to designate a special
document so that when many students access this document, it means they
have reached a certain level of proficiency and therefore the learning
materials should be adjusted to become more difficult. Likewise when many
students access a special document indicating deficiency, it means they have
problems and therefore the learning materials should be made simpler.
The following index cell types are specified:
Proficiency-level index cell: The proficiency-level index cell is

associated with a certain specific multimedia document (such as doc-I,
usually reacheable only by proficient students). When this index cell is

www.manaraa.com

12. Exercises and Project Suggestions 225

triggered, it will increase the proficiency-level by 1. When the proficiency­
level has reached a predefined threshold (such as 3), it will send message to
the instructor, informing the instructor that a sufficient number of students
have reached this level of proficiency. It will also send messages to certain
documents (such as doc-3, doc-4, doc-5) to become harder.
Deficiency-level index cell: The deficiency-level index cell is associated

with a certain specific multimedia document (such as doc-2, usually
reacheable only by deficient students). When this index cell is triggered, it
will increase the deficiency-level by 1. When the deficiency-level has
reached a predefined threshold (such as 2), it will send message to the
instructor, informing the instructor that a significant number of students have
reached this level of deficiency. It will also send messages to certain
documents (such as doc-3, doc-4, doc-5) to become easier.
Self-adjustment index cell: This self-adjustment index cell is associated

with multimedia documents containing learning materials (such as doc-3,
doc-4 and doc-5). When it receives a "harder" message, it upgrades the
learning materials to become harder. Likewise, when it receives a "easier"
message, it downgrades the learning materials to become easier.
The above are three index cell types. The instances can be associated

with individual multimedia documents (such as doc-I, ... , doc-5).
There is also a home page (such as doc-O), with links to the other

documents (such as doc-I, ... , doc-5).
(a) Draw state-transition diagrams to define graphically the three index

cell types.
(b) Specify the three index cell types formally using mathematical

notations ic = (X, Y, S, s<sub>o<!sub>, A, t_{max}, f, g).
(c) Draw a diagram showing a few multimedia documents (such as doc-I,

..., doc-5) enhanced with the index cells to illustrate how these index cells
work together to form an active index system.
(d) Use the IC Builder to construct the three index cell types. The output

from IC Builder, together with the appropriate actions (C functions) and
specification of input message space, output message space, will become
input to the IC Compiler to generate the IC Manager.

How to download the Ie Builder:
Please go to the author's web site at: www.cs.pitt.edu/-chang and follow

the links to multimedia software engineering courseware. In a directory for
IC_Builder the following files can be found: ictapp.zip and ictype.zip. Use
pkunzip to unzip and install under Windows.
At the time of the writing of this book, the above mentioned files are at:
http://www.cs.pitt.edu/-jung/IC Builder/ictapp.zip
http://www.cs.pitt.edu/-jung/IC Builder/ictype.zip

www.manaraa.com

226

Additional Explanation:

Chapter 12

For this exercise there is NO NEED to write any C functions. The
assignment can be handed in either as a hard copy or via the Internet. For
the part where you use IC_Builder to construct IC types, you can turn in the
output file(s) generated by the IC_Builder, which are ascii files X.in. You
can also provide screen dumps captured during the construction process. If
you use Internet, it will be the best if you can provide the URL so that the
instructor can browse the web pages containing the solutions. In other
words, please prepare a set of web pages and figures can be embedded as
gif/jpg files. This will be the easiest for other people to read. It will also be
useful when you later develop a presentation based upon such materials.

EXERCISE 3:

The purpose of this exercise is to understand the relationship between
active index and Petri nets. Both are tools for the modeling of distributed
multimedia systems. Active index cells are added incrementally to build a
dynamic index, and the connections can also change dynamically. However,
if the massages passed between index cells are deterministically routed, then
it is possible to convert active index into a Petri net. Otherwise you must use
a Petri net with conditions (predicates) associated with the transitions, or an
Evaluation Net (E-net).
(a) Convert the active index you constructed in Exercise #2 into a Petri

net (or an E-net).
(b) Take the diagram you drew in part (c) of Exercise #2. Redraw it here

(because you may want to make some changes), and now use the marked
Petri net to illustrate the scenario. You can draw a sequence of marked Petri
net to show how the system works.

Additional Explanation:

(a) If we consider how the active index system passes messages and
reaches equilibrium state (if one exists), this leads to a formal study using,
for instance, the Petri net model.
(b) Notice this is the beginning of a systematical approach to build

prototypes for active distributed multimedia systems. Can we create a new
systematic approach, i.e., a new software process model, for distributed
multimedia systems design?

www.manaraa.com

12. Exercises and Project Suggestions 227

(c) The index cells could span several nodes. Therefore, the active index
system is a distributed index. The IC Managers must also be distributed to
the nodes in the networks.

EXERCISE 4:

The purpose of this exercise is to experiment with MICE, the prototyping
tool for distributed multimedia computing. The MICE development
environment provides step-by-step instructions on how to use the IC_Builder
to create the les, how to use the IC_Compiler to create the customized
IC_Manager, and finally how to generate the multimedia application.
First, you need to compile the index cell specifications using the

IC_Compiler explained in Section 3 of Chapter 8. The IC_Compiler is used
to create the customized IC_Manager. This customized IC_Manager
explained in Section 4 of Chapter 8 becomes the CGI program to be invoked
when the user clicks on the Web pages.
Then, you build the HTML pages for the active index system for distance

learning you did for exercise #2. The end result should be a demonstration.
You only need to e-mail your URL to the instructor so that the instructor can
try your demo.
After that you can set up your working directory, by creating two

subdirectories called "TAOML" and "source", and then copying all the files
from the three directories IC_Compiler, IC_Manager and IC_Taoml to this
"source" directory. Then you can follow the steps spelled out in MICE
Application Development Steps in Section 6 of Chapter 8.
All the necessary files are available under -junglpubliclhtml in the

following four directories: IC_Builder (the files you need to run the
IC_Builder on PC), IC_Compiler (the files to run the IC_Compiler),
IC_Manager (the files needed to compile the IC_Manager) and IC_Taoml
(the interpretor to translate .taoml pages to .html pages) and can be
downloaded.

EXERCISES:

After you have studied the various approaches, write a critique of these
approaches, and a proposal of what you intend to do as a project. The
critique and proposal should be between 1,500 and 2,000 words, with no less
than 5 and no more than 10 references. A "template" is provided:

1st paragraph: Introduction.

www.manaraa.com

228

2nd paragraph: My critique of various approaches.
(this could be the longest paragraph)
3rd paragraph: What I propose to do and how.
4th paragraph: Why this project is worth doing.
5th paragraph: Discussions.
5 to 10 references.

The critique/proposal should be e-mailed to the instructor.

PROJECT SUGGESTIONS:

Chapter 12

Select an application area of interest to you. Design a multimedia
application according to the suggested framework:
1. Syntax: Design the web pages and multimedia interaction languages.
2. Semantics: Design the actions associated with an application, and
develop the active index cells (or agents). Associate the syntax with
the semantics to organize the tele-action objects.

3. Pragmatics: Prototype the application using the MICE prototyping
and multimedia information custom engineering environment.

4. Critique: Evaluate your design and suggest different design
alternatives.

Those who are more interested in theory can investigate the formal
specification of a multimedia application, and the verification and validation
of such a formal specification.

www.manaraa.com

References

[ACM94] ACM, Special Issue on Intelligent Agents, Communications of the ACM,
Vol. 37, No.7., July 1994.

[Ah086] A. V. Aho, R. Sethi, J.D. Ullman, Compilers - principles, techniques
and tools, Addison-Wesley Publishing Co., 1986.

[AlIen91] Allen J.F., Time and time again: The many ways to represent time,
International Journal of Intelligent Systems, vol. 9, No.3, June 1991, pp. 413­
428.

[Arndt97a] T. Arndt, A. Cafiero, A. Guercio, "Multimedia Languages for Teleaction
Objects", Proceedings of 1997 IEEE Symposium on Visual Languages, pp. 318­
327, September 1997.

[Arndt97b] T. Arndt, A. Cafiero, A. Guercio, "Symbol Relation Grammars for
Teleaction Objects", Technical Report, Dipartimento di Informatica ed
Applicazioni, University of Salerno, 1997.

[Berners-Lee92] T. Berners-Lee, R. Calliau, J. F. Groff and B. Pollermann, "World­
Wide Web: the Information Universe", Electronic Networking, Vol. 2, No.1,
Spring 1992, pp. 52-58.

[Berra90] P. B. Berra, C. Y. R. Chen, A. Ghafoor, C. C. Lin, T. D. C. Little and D.
Shin, "Architecture for Distributed Multimedia Database Systems", Computer
Communications, Vol. 13, No.4, May 1990, pp. 217-231.

[Blak98] Micheal Blakeley, "ActiveWorks Focus on Business Practices", PC Week,
Dec 28, 1998, p.37. [AlIen83] Allen, J. F., "Maintaining Knowledge about
Temporal Intervals," Communications of the ACM, vol. 26, no. 11, pp. 832-843,
November 1983.

[Borenstin92] N. S. Borenstin, "Computational Mail as Network Infrastructure for
Computer-Supported Cooperative Work", CSCW 92 Proceedings, November
1992, pp. 67-74.

[Botto96] P. Bottoni, M. F. Costabile, S. Levialdi, P. Mussio, "Specification of
visual languages as means for interaction", AVI '96 Int. Workshop on Theory of
Visual Languages, 1996. URL: http://www.es.monash.edu.au/-bemdm/TVL96/tvI96­
hOJnc.html.

[Brand88] F. J. Brandenburg, "On polynomial time graph grammars", In: LNCS
294, pp 227-236,1988.

www.manaraa.com

230 References

[Bulte9l] D. C. A. Bulterman, G. van Rossum, R. van Liere, "A structure for
transportable, dynamic multimedia documents", in Proceedings of the Summer
1991 USENIX Conference, Nashville, TN., June 1991, pp 137-155, 1991.

[Campb94] A. Campbell, G. Coulson, D. Hutchison, "A Quality of Service
Architecture", Computer Communication Review 24(2):6-27, 1994.

[Catar98] T Catarci, S. K. Chang, W. Liu and G. Santucci, "A Light-Weight Web­
At-a-Glance System for Intelligent Information Retrieval", Journal of
Knowledge-Based Systems, Elsevier, Vol. 11, 115-124, 1998.

[ChangH95a] H. J. Chang and S. K. Chang, "A Fuzzy Relation Language for
Multimedia Presentation Scheduling", Technical Report, Department of
Computer Science, University of Pittsburgh, March 1995.

[ChangH95b] H.J. Chang, TY. Hou, A. Hsu, S.K. Chang, "The Management and
Application of Tele-Action Objects", ACM Multimedia Systems J., Vol. 3, No. 5­
6, Springer Verlag, 1995, pp. 204-216.

[Chang87a] Chang, S. K., "Icon Semantics - A Formal Approach to Icon System
Design," International Journal ofPattern Recognition and Artificial Intelligence,
vol. I, no. I, pp. 103-120, 1987.

[Chang87b] S.K. Chang, G. Tortora, A. Guercio, Bing Yu "Icon Purity - Toward a
Formal Theory of Icons", International Journal of Pattern Recognition and
Artificial Intelligence, Vol. I, No. 3&4, 1987, pp. 377-392.

[Chang89] Chang, S. K., M.J. Tauber, B. Yu, and J.S. Yu, "A Visual Language
Compiler," IEEE Transactions on Software Engineering, vol. 5, no. 5, pp. 506­
525, 1989.

[Chang90] Chang, S. K., "A Visual Language Compiler for Information Retrieval by
Visual Reasoning," IEEE Transactions on Software Engineering, pp. 1136-1149,
1990.

[Chang9l] Chang S. K., Principles ofPictorial Information Systems Design,
Prentice-Hall, 1991.
[Chang92] S. K. Chang, T Y. Hou and A. Hsu, "Smart Image Design for Large
Image Databases", Journal of Visual Languages and Computing, Vol. 3, No.4,
December 1992, pp. 323-342.

[Chang94a] Chang, S. K., M. F. Costabile, and S. Levialdi, "Reality Bites ­
Progressive Querying and Result Visualization in Logical and VR Spaces," Proc.
ofIEEE Symposium on Visual Languages, pp. 100-109, St. Louis, October 1994.

[Chang94b] Chang, S. K., S. Orefice, M. Tucci, and G. Polese, "A Methodology and
Interactive Environment for Iconic Language Design," International Journal of
Human-Computer Studies, vol. 41, pp. 683-716, 1994.

[Chang95a] Chang, S. K., "Towards a Theory of Active Index," Journal of Visual
Languages and Computing, Vol. 6, No. I, pp. 101-118, March 1995.

[Chang95b] Chang, S. K., G. Costagliola, G Pacini, M. Tucci, G. Tortora, B. Yu,
and J. S. Yu, "Visual Language System for User Interfaces," IEEE Software, pp.
33-44, March 1995.

[Chang96a] S.K. Chang, "Extending Visual Languages for Multimedia", IEEE
Multimedia, Vol. 3, No.3, 1996, pp. 18-26.

[Chang96b] S.K. Chang "Active Index for Content-Based Medical Image
Retrieval", Journal of Computerized Medical Ima{?ing and Graphics, Special
Issue on Medical Image Databases (S. Wong and H. K. Huang, eds.), Elsevier
Science Ltd., Vol. 20, No.4, 1996, pp. 219-229.

[Chang96c]S.K. Chang, P.W. Chen, G. Barry "A Smart WWW Page Model and its
Application to On-Line Information Retrieval in Hyperspace", Proc. of Pacific

www.manaraa.com

References 231

Workshop on Distributed Multimedia Systems, DMS'96, Hong Kong, June 27-28,
1996, pp. 220-227.

[Chang97] Chang S.K., Polese G., Thomas R., and Das S., A Visual Language for
Authorization Modeling, Proc. of IEEE Symposium on Visual Languages, 1997,
pp.ll0-118.

[Chang98a] S. K. Chang, D. Graupe, K. Hasegawa and H. Kordylewski ,"An Active
Multimedia Information System for Information Retrieval, Discovery and
Fusion", IJSEKE, March 1998, Vol. 8, No.1, 139-160.

[Chang98b] S. K. Chang, D. Graupe, K. Hasegawa and H. Kordylewski , "An
Active Medical Information System using Active Index and Artificial Neural
Network", in Advances in Medical Image Databases, (S. Wong, ed.), Kluwer,
1998,225-249.

[Chang98c] S. K. Chang, E. Hassanein, C. Y. Hsieh, "A Multimedia Micro­
University", IEEE Multimedia Magazine, Vol. 5, No.3, July-September 1998,
60-68.

[Chen92] T. C. Chen, Y. Deng, S. K. Chang, "A Simulator for Distributed Systems
Using G-Nets", Proceedings of Pittsburgh Simulation Conference, April 30 ­
May 1 1992, pp. 2705-2714, 1992.

[Chiu98] T. Chiueh and W. Wu, "Variorum: Multimedia-based Program
Documentation System", Technical Report, CS Dept., SUNY, Stony Brook,
1998.

[Choi99] S. Y. Choi and A. B. Whiston, "The future of E-commerce-Integrate and
Customize", Computer, Jan 1999, Vol. 32, No.1, pp. 133-138.

[Colai94] F. Colaitis, "Opening Up Multimedia Object Exchange with MHEG",
IEEE Multimedia 1(2):80-84, 1994.

[Costa95a] G. Costagliola, A. Guercio, G. Tortora, M. Tucci, "Linguaggi Visuali e
Ingegneria del Software", Procs. of AleA 95, Chia (Italy), Sept.27-29, 1995,
VoU, pp. 1-8.

[Costa95b] G. Costagliola, G. Tortora, S. Orefice, A. De Lucia, "Automatic
generation of visual programming environments", Computer 28: 56-66, 1995.

[Costa97a] Costagliola G., De Lucia A., Orefice S., Tortora G., A Parsing
Methodology for the Implementation of Visual Systems, IEEE Transactions on
Software Engineering, vol. 23, n. 28, 1997.

[Costa97b] G. Costagliola, "Formal methods for visual editors and compilers",
Technical Report, Dipartimento di Informatica ed Applicazioni, University of
Salerno, 1997.

[Crimi90] Crimi, c., A. Guercio, G. Pacini, G. Tortora, and M. Tucci, "Automating
Visual Language Generation," IEEE Transactions on Software Engineering, vol.
16, no. 10, pp. 1122-1135, October 1990.

[Deng90] Y. Deng, S. K. Chang, "A G-Net Model for Knowledge Representation
and Reasoning", IEEE Transactions on Knowledge and Data Engineering 2(3):
295-310, 1990.

[Datt097] A. Dattolo and V. Lois, "Active Distributed Framework for Adaptive
Hypermedia", International Journal of Human Computer Studies, 46(5):605­
626, May 1997.

[Deng91] Y. Deng, S. K. Chang, "A Framework for the Modeling and Prototyping
of Distributed Information Systems", International Journal of Software
Engineering and Knowledge Engineering 1(3):203-226, 1991.

[Dimit94] D. A. Dimitroyannis, "Virtual Classroom: A Case Study", 1st
International Conference on the World-Wide Web Proceedings, May 1994.

www.manaraa.com

232 References

[Flet98] Tim Fletcher, Stephen G. MacDonell, William B. L. Wong, Early
Experiences in Measuring Multimedia Systems Development Effort, 1998.

[Ferru94] F. Ferrucci, G. Tortora, M. Tucci, G. Vitiello, "A predictive parser for
visual languages specified by relational grammars", Proc. IEEE Symp. on Visual
Languages, pp. 245-252, 1994.

[Ferru%] F. Ferrucci, G. Pacini, G. Satta, M.I. Sessa, G. Tortora, M. Tucci, G.
Vitiello, "Symbol Relation Grammars: A Formalism for Graphical Languages",
Infrmnation and Computation, Vol. 131, No. I, 1996, 1-46.

[Fujik95] K. Fujikawa, S. Shimojo, et. al. "Application Level QoS Modeling for"a
Distributed Multimedia System", Proceedings of 1995 Pacific Workshop on
Distributed Multimedia Systems, Manoa, Hawaii, Mar. 31 - Apr. 2, pp 44-51,
1995.

[Garr97] A. Garrido, G. Rossi and D. Schwabe, "Pattern Systems for Hypermedia",
Proc. of PloP'97, 1997.

[Goldhergn] Y. Goldberg, M. Safran and E. Shapiro, "Active Mail - A Framework
for Implementing Groupware", CSCW 92 Proceedings, November 1992, pp. 75­
83.

[Golin90] E. J. Golin, S. P. Reiss, "The specification of visual language syntax", J.
Visual Languages and Computing 1:141-157,1990.

[Grosk97] W. Grosky, R. Jain, R. Mehrotra, eds., The handbook of multimedia
inlormation management, Prentice-Hall, 1997.

[Guha95] A. Guha, A. Pavan, J. C. L. Liu, B. A. Roberts, "Controlling the process
with distributed multimedia", IEEE Multimedia 2:20-29, 1995.

[Hala95] F. Halasz, "Reflections on Notecards: Seven Issues for the Next
Generation of Hypermedia Systems", CACM, Vol. 31, No.7, 1995, pp. 836-855.

[Hardm94] L. Hardman, D. C. A. Bulterman, G. van Rossum, "The Amsterdam
Hypermedia Model: extending hypertext to support real multimedia", Technical
Report, CS-R9306, Centre for M&CS, Netherlands, 1994.

[Herman94] 1. Herman, G. S. Carson, et. ai, "PREMO: An ISO Standard for a
Presentation Environment", Proceedings of the ACM, Multimedia '94
Conference, ed. D. Ferrari, San Francisco, October 1994.

[Hirak98] M. Hirakawa, Call for papers first international workshop on multimedia
software engineering. URL: http://www.huis.hiroshima-
u.ac.jp/-hirakawa/MSE98/mse98.hunl.

[Hira99] M. Hirakawa, "Do Software Engineers like Multimedia?" ICMCS99,
Firenze, Italy, June 1999.

[Hoch98] T. Hochin, M. Harada, M. Nakata and T. Tsuji, "Virtual Multimedia
Objects as the Platform of Customizing of Multimedia Data", Proc. Int'l
Workshop on Multimedia Software Engineering, Kyoto, Japan, April 1998, pp.
20-27.

[Hou94] T. Y. Hou, A. Hsu, M. Y. Chiu, S. K. Chang and H. J. Chang, "An Active
Multimedia System for Delayed Conferencing", Proceedings of SPIE, High
Speed Networking and Multimedia Computing, February 1994, pp. 97-104.

[IOS94] International Organization for Standardization, Presentation Environment
for Multimedia Objects (PREMO), ISO/lEC 14478-4.1, September 1994.

[ISOn] ISO 8879: 1986, "Information Processing - Text and Office Systems ­
Standard Generalized Markup Language (SGML)", ANSI, New York, 1992.

[Isak96] T. Isakowitz, E. A. Stohr and P. Balasubramanian, "RMM: A Methodology
for Structured Hypermedia Design", CACM, Vol. 38, No.8, Aug 1995, pp. 34­
44.

www.manaraa.com

References 233

[JBR95] Journal of Business Review, May 1995.
[Karsa95] G. Karsai, "A Configurable Visual Programming Environment",

COII/puter, Vol. 28, No.3, 1995, pp. 36-44.
[Khali96] Y. Khalifa, S. K. Chang and L. Comfort, "A Prototype Spatial-Temporal
Reasoning System for Emergency Management", Proc. of International
Conference on Visual Information Systems VISUAL96, February 5-7, 1996,
Melbourne, Australia, 469-478.

[Li94] L. Li, A. Karmouch, N. D. Georganas, "Multimedia teleorchestra with
independent sources: Part I - temporal modeling of collaborative multimedia
scenarios", ACM/Springer-Varlag Journal Multimedia Systems 2(1):143-153,
1994.

[Lin94] C. C. Lin, C. S. Kao, W. C. Shang and S. K. Chang, "The Transformation
from Multimedia Data Schema to Multimedia Communications Schema in
Distributed Multimedia Systems", Proc. of Pacific Workshop on Distributed
Multimedia Systems, Feb 26,1994, pp. 1-13.

[Lin9S] C. C. Lin, C. S. Kao, S. K. Chang SK, "Transformation among Multimedia
Schemas in Distributed Multimedia Systems", Proceedings SPIE Multimedia
Computing and Networking 1995, San Jose, CA., Feb. 6-81995.

[Lin96] Lin, C. c., J. X. Xiang, and S. K. Chang, "Transformation and Exchange of
Multimedia Objects in Distributed Multimedia Systems," ACM Multimedia
Systems Journal, vol. 4, no. 1, pp. 2-29, Springer Verlag, 1996.

[Little90a] T. D. C. Little and A. Ghafoor, "Multimedia Object Models for
Synchronization and Databases", Proc. 6th Data Engineering Conference, Los
Angeles, CA, February 1990, pp. 20-27.

[little90b] T. D. C. Little, A. Ghafoor, "Synchronization and Storage Models for
Multimedia Objects", IEEE JSAC 8(3) 413-427, 1990.

[Little91] T. D. C. Little, A. Ghafoor, "Multimedia Synchronization Protocols for
Broadband Integrated Services", IEEE JSAC 9(9):1368-1381,1991.

[Little93a] T. D. C. Little, "A Framework for Synchronous Delivery of Time­
Dependent Multimedia Data", ACM/Springer Multimedia Systems 1(2):87-94,
1993.

[Little93b] T. D. C. Little, A. Ghafoor, "Interval-Based Temporal Models for Time­
Dependent Multimedia Data", IEEE Transactions on Data and Knowledge
Engineering 5(4):551-563,1993.

[Lyar98] D. Lyardet, G. Rossi, D. Schwabe, "Using Design Patterns in Educational
Multimedia Applications", Proc. of ED-MEDIA'98, Friburg, June 1998.

[MacD098] Stephen G. MacDonell and Tim Fletcher, "Industry Practices in Project
Management", Proc. of the Metric '98, IEEE CS press.

[Mar-ri96] K. Marriot, B. Meyer, "Towards a hierarchy of visual languages", Proc.
IEEE Symp. on Visual Languages, pp 196-203, 1996.

[Merce93] C. Mercer, S. Savage, H. Tokuda, "Processor Capacity Reserves for
Multimedia Operating Systems", Technical Report, CMU-CS-93-157, School of
Computer Science, Carnegie Mellon University, 1993.

[Murr98] P. Murray, "Can small companies afford to manage their knowledge?"
Knowledge Management Associates, 1998. URL: http:// www.knowledge-at­
work.corn! km_small_companiesl.htm

[Nappi98] M. Nappi., G. Polese, G. Tortora, "Fractal Indexing and Retrieval
System", Image Vision and Computing, 16, pp. 1019-1031, 1998.

[Nei198] S. Neil, "Delivering on Web Time", PC Week, Dec 28, 1998, p.104.

www.manaraa.com

234 References

[Patr99J C. Partridge, "Embedded Wireless Connects Net to all and all to Net",
IEEE Spectrum, Jan. 1999, p.38.

[Poles98J Polese G., MMDMS:A Framework for the Design of Spatial-Temporal
Visual Languages, Ph.D. Thesis, University of Salerno, Italy, 1998.

[Ramae92J J. Ramaekers, G. Ventre, "Quality-of-Service Negotiation in a Real­
Time Communication Network", Technical Report, TR-92-023, International
Computer Science Institute, Berkeley, 1992.

[Reisi85J W. Reisig, Petri Nets - An Introduction, Berlin, Germany, Springer­
Verlag, 1985.

[Saied96J H. Saiedian, "An invitation to formal methods", Computer 29:16-17,
1996.

[Smith92] 1. R. Smith, "Columbia University's Imail (A Multimedia Mail Utility),
Imail Operator's Manual", Image Lab Imail Project, Center of
Telecommunication Research, Columbia University, 1992.

[Son93J S. H. Son and N. Agarwal, "Synchronization of Temporal Constructs in
Distributed Multimedia Systems with Controlled Accuracy", Technical Report,
CS&IPC, University of Virginia, 1993.

[Staeh94J R. Staehli, J. Walpole, D. Maier, "Quality of Service Specification for
Multimedia Presentations", Technical Report CS/E 94-033, Department of
Computer Science and Engineering, Oregon Graduate Institute of Science and
Technology, 1994.

[Stein90J R. Steinmetz, "Synchronization Properties in Multimedia Systems", IEEE
JSAC 8(3):401-412,1990.

[Tsai99J 1. P. Tsai, "Knowledge-based Software Architecture", IEEE Trans. on
Knowledge and Data Engineering, Vol. 11, No. I, Jan 1999.

[Tzou87J K. H. Tzou, "Progressive Image Transmission: A Review and Comparison
of Techniques", Optical Engineering 26(7):581-589, 1987.

[USWEB98J USWEB, Strategies for Growing Your Business through E-commerce,
1998. URL: http://www.usweb.com/services/ssc/res_lib/e_commerce.html.

[W3C98] W3C Recommendation, "Extensible Markup Language (XML) 1.0", 10 February
1998. URL: http://www.w3c.org/TR/REC-xml.

[Walla91 J G. K. Wallace, "The JPEG Still Picture Compression Standard", CACM
34(4):30-44,1991.

[Weitz94J L. Weitzman, K. Wittenburg, "Automatic Presentation of Multimedia
Documents Using Relation Grammars", Proceedings of ACM Multimedia 94,
ACM Press, New York, pp. 443-451,1994.

[Weitz96aJ L. Weitzman, K. Wittenburg, "Grammar-based articulation for
multimedia document design", ACM Multimedia Systems J 4:99-111, 1996.

[Weitz96bJ L. Weitzman, K. Wittenburg, "Relational grammars: theory and practice
in a visual languages interface for process modeling", AVI '96 Int. Workshop on
Theory of Visual Languages, 1996. URL:
http://www.cs.monash.edu.au/-berndmlTVL96/tvI96-home.html.

[Wild91] J. C. Wild, K. Maly and L. F. Liu, "Decision-based Software
Development", Journal of Software Maintenance, Vol. 3, No.1, 1991.

[Wild98J 1. c. Wild et aI., "Project Management using Hypermedia CASE Tools",
Technical Report, Dept. of Computer Science, Old Dominion University, 1998.

[Witte92J K. Wittenburg, "Earley-style parsing for relational grammars",
Proceedings of IEEE Workshop on Visual Languages and Computing, pp 192­
199. 1992.

www.manaraa.com

References 235

[Wong97] S. T. C. Wong, H. K. Huang, "Networked multimedia for medical
imaging". IEEE Multimedia 4:24-35,]997.

[Woolf95] B. P. Woolf, W. Hall, "Multimedia pedagogues: interactive systems for
teaching and learning", Computer 28:74-82,]995.

[Xiang95] J. Xiang, H. J. Chang, C. S. Kao, S. K. Chang, "An Object Exchange
Manager for a Distributed Multimedia Information System", Proceedings SPIE
Multimedia Computing and Networking, San Jose, CA., Feb. 6-8]995.
[Znati93] T. F. Znati, Y. Deng, B. Field and S. K. Chang, "Multi-Level
Specification and Protocol Simulation for Distributed Multimedia
Communication", Special Issue of International Journal in Computer Simulation
on Simulation of Communication Systems, Vol. 3, No.4, pp. 355-382,1993.

www.manaraa.com

Index

active index, 52, 56, 62, 63, 65. 69
computation power, 63
formal definition, 52
information retrieval example, 62
Mosaic IC system, 69
smart image example. 56
reversible index, 65
active multimedia system (AMS), 86. 87
architecture, 86
system structure, 87
advantages of multimedia technology. 3
Bookman, 36
bundled node, 75
COCOMO,28
courseware support, 10
DAMSEL,15
decision based hyper multimedia CASE
(DHC),12
decision based systems development
(DBSD), 12
distributed multimedia systems, 147
Extended Simple Actor Language (ESAL),
21
G-net,65
Goal/Question/Metric (GQM) Model, 27
high presence, 2
high tech, 2
how small business view technology, 3
hypergraph, 61, 74"76,83
example, 76
link types, 75
node types, 74
with annotations, 61, 83
hypermedia design, 22, 24
model-based approach 22
pattern-based approach 24
index cell (IC), 42, 43, 67,110,112,113,
119,126,127,129
cell communication, 42
cell construction, 43
IC Builder, 110, 119
IC Compiler, 112, 127
IC Manager, 67,113,129
input file format. 126

icon, 30, 38
generalized icons, 38
landmark, 24
line of code (LOC), 26
Linux HQ Kernel documentation. 13
LVLASO project, 12
media types, 74
MET++,16
MME,19
Mosaic, 69
Multimedia IC Development Environment
(MICE), 102
application development steps, 131
application to knowledge fusion. 133
how to build MICE application, 118
tools, 103
visual interface, 132
multidimensional language, 7, 38, 39, 41,
47,141
content-sensitive, 47
design methodology, 141
generalized icons, 38
grammar, 39
location-sensitive, 47
operators, 38
syntactic structure, 41
time-sensitive, 47
multimedia data schema (MDS), 84
Multimedia Extension MME, 19
multimedia object exchange OEM, 166,
168
class hierarchy, 168
manager, 166
multimedia schema models. 153, 154, 159,
162
MDS to MCS transformation, 159
MSS to MDS transformation, 154
transformation example, 162
multimedia software engineering, 3, 6, 7
conceptual framework, 7
dual roles, 6
flexible MSE tools, 3
multimedia software project effort
management, 26

www.manaraa.com

238

multimedia technology trends. 4
Negroponte. I
news. 24
operators. 30. 38. 39
generalized icons. 38
special operators. 39
temporal operators. 38
personal digital assistant (PDA). 4
Petri net. 42, 64
Presentation Environment for Multimedia
Objects (PREMO), 20
Relationship Management Methodology
(RMM), 22,23
access primitives, 23
destination influence, 23
reliable software technologies (RST)
documentation model, 13
Smart Multimedia Mail (SMM) system.
91.93,94
knowledge acquisition, 93
knowledge generator, 94
software documentation, 13
software life cycle, 117, 118
rapid prototyping model, 118
waterfall model, 117
specification of multimedia applications,
20.185,189.194
kiosk example, 189
the grammatical approach, 194
symbol relation grammar, 196
teleaction object markup language
(TAOML), lOS, 106, 109, 113
TAOML Builder, 106
TAOML interpreter, 109
TAOML to XML translator, 113
teleaction object, 37, 73, 79, 88.197,200
boundary SR grammar for TAO, 197
definition, 73
formatted knowledge definition, 88
hypergraph part, 73
knowledge part. 79
relational language. 75
semantic extension using attribute SR
grammars, 200
example. 37

USA Today, I
Variorum documentation system. 14
virtual multimedia object. 25
virtual reality (VR) query, 47
visual language, 30, 33. 46. 139
design methodology. 139
dynamic visual language. 46
icons, 30
meaning. 33
operators. 30
web site life cycle,S
XML.114

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Gray Gamma 2.2)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.3

 /CompressObjects /Off

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Perceptual

 /DetectBlends true

 /DetectCurves 0.1000

 /ColorConversionStrategy /sRGB

 /DoThumbnails true

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams true

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts false

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 149

 /ColorImageMinResolutionPolicy /Warning

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 150

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 149

 /GrayImageMinResolutionPolicy /Warning

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 150

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 599

 /MonoImageMinResolutionPolicy /Warning

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 600

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (None)

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [595.276 841.890]

>> setpagedevice

